
International Journal of Computer Applications Technology and Research

Volume 5–Issue 9, 612-618, 2016, ISSN:-2319–8656

www.ijcat.com 612

A Review of Agile Software Effort Estimation Methods

Samson Wanjala Munialo.

Department of Information Technology

Meru University of Science and Technology

Meru - Kenya

Geoffrey Muchiri Muketha

Department of Information Technology

Murang’a University College

Murang’a - Kenya

Abstract: Software cost estimation is an essential aspect of software project management and therefore the success or failure of a software

project depends on accuracy in estimating effort, time and cost. Software cost estimation is a scientific activity that requires knowledge of a

number of relevant attributes that will determine which estimation method to use in a given situation. Over the years various studies were done

to evaluate software effort estimation methods however due to introduction of new software development methods, the reviews have not

captured new software development methods. Agile software development method is one of the recent popular methods that were not taken

into account in previous cost estimation reviews. The main aim of this paper is to review existing software effort estimation methods

exhaustively by exploring estimation methods suitable for new software development methods.

Keywords: Lines of codes, Cost constructive model, Function point, Agile, software effort estimation.

1. INTRODUCTION
Demand for more functionality, higher reliability and higher

performance has resulted to higher competitiveness among

software developers. To stay competitive, software developers

need to deliver software products on time, within the budget and to

the agreed level of quality. Most projects fail due to planning issues

such as cost, time and requirements specifications. A study on

software projects in 2012 by Standish shows that 43% of projects

were challenged and 18% failed due to over budget, late delivery

and less than required features or functions [1]. This illustrates the

necessity for reliable software development method and software

cost estimation method.

For faster and quality delivery, software vendors are moving from

structured development methods where requirements are well

known in advance to agile development which welcomes customer

changing requirements at later stages of software development [2].

The shift from traditional development methods to agile is due to

the high cost of affecting changes request by users at later stages of

software development. Agile encourage changes, therefore

decreasing the cost of change and reduce the overall development

cost. Agile make this possible as a result of simple design,

collective ownership, continuous testing and short releases cycles.

Many estimating methods have been proposed since 1950’s and

many studies have evaluated their effectiveness. The most popular

traditional cost estimation methods are Expert judgment, Analogy,

Wideband Delphi, Source lines of codes, Function points [3],

Object points and Cost constructive model (COCOMO) [4] [5].

However, they are not effective when dealing with agile software

estimation. Estimating agile software is a problem due to varying

requirements and incremental development. This prompted the

introduction of cost estimation methods such as planning poker [6]

in 2003 which is one of the most popular agile estimation methods.

However, planning poker depends on expert experience on

previous projects and its estimates are specific to the team; another

team may estimate different story point for the same project

Recently other methods such as Bayesian Belief Network,

AgileMOW[7] and Constructive Agile Estimation algorithm [8]

were introduced to deal with uncertainty and iterative nature of

agile software development. Estimation of effort and cost depends

on accurate estimation of the software size which helps to predict

the project scope. Apart from size, other indicators such as project

complexity factors are considered when estimating effort.

Therefore, a reliable software cost estimation method must include

critical cost indicators for more accurate estimation. The main

objective of this paper is to discuss existing software cost

estimation methods including their features and situations where

they are applicable. This paper is organized in 6 sections which

include introduction, background, Traditional effort estimation

methods, agile effort estimation methods, discussion and

conclusion.

2. BACKGROUND
Software estimation is a critical component of software project

management. Cost overruns increased from an average of 56% in

2004 to 59% in 2012 in sampled software projects while time

overruns increased from 71% in 2010 to 74% in 2012 [1]. More

accurate estimation helps software developers to gain profit and

customers to be more satisfied. On the other hand, high costing can

lead to lost profit by losing bidding while low costing can lead to

cost overruns and poor quality of end product. Software estimation

comprise of estimating software cost, size, effort and time required

to develop the software [9]. Software developers require an

effective software cost estimation model to facilitate project

planning and eventually successful implementation of a software

project.

Agile software development method is one method that provides a

challenge to existing software cost estimation techniques. Agile

software development is based on iterative development where

requirements evolve through collaborations. Scope is continuously

adjusted throughout the project and new tasks are discovered [10].

It emphasizes on working software, customer collaboration,

response to change on demand and does not support well defined

requirements like the traditional waterfall method. All these

challenges make most of the existing software cost estimation

techniques to appear limited when dealing with agile software.

Software developers have had the interest of estimating accurately

the cost of developing software products. The first methods were

only based on software size using lines of codes or function points

to estimate the cost. Currently other cost drivers such as process

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 9, 612-618, 2016, ISSN:-2319–8656

www.ijcat.com 613

factors and human factors have been included in estimation

methods to improve on software estimation accuracy [7]. However,

demand for new functionalities, quick delivery of software such as

mobile applications established a need for new software

development methods. Currently other features such software re-

use, component based development, distributed systems and

iterative development are common features in software engineering

industry. Evolution in software engineering industry provided a

challenge to software estimations researcher to come up with

methods that will estimate more accurately.

3. TRADITIONAL COST ESTIMATION

METHODS
Cost estimating models are classified as non-algorithmic and

algorithmic. Non-algorithmic methods estimation relies on experts

who have experience on similar previous projects while

algorithmic methods use parametric in their estimation.

3.1 Non-Algorithmic estimation methods
Most non-algorithmic cost estimation techniques are based on

analytical comparison with previous similar projects and expert

experience [10]. Most popular methods in terms of recent

publications in this group are expert judgment, Analogy, top-down,

bottom-up, price-to-win and Wideband Delphi.

3.1.1 Expert judgment

Expert Judgment technique is the most frequently applied cost

estimation method where experts are responsible for estimating the

size and cost of a software. This method is based on the project

manager experience in similar software projects. Expert cost

estimation method is helpful when there is limitation in finding data

and gathering requirements [10] [11] [12]. Expert judgment is

prone to human errors and biasness. Its success is based on expert

judgment that is expert experience may differ from one expert

resulting to varying estimates on the same type of project.

However, it is helpful in small and medium sized software project

and when the development teams and software attributes have not

experienced significant changes as compared to previous projects.

3.1.2 Analogy technique

Analogy technique estimation is done according to the actual cost

of one or more completed projects that are similar to the new

project to be estimated [8][10] [11]. Estimation can be done at the

total project level or at sub system level. The strength of estimation

by analogy is that the estimate is based on actual project experience

and estimation can be done in the absence of an expert. However,

it does not take into consideration the extent of other relevant cost

factors in the previous project such as the environment and

functions which may differ with new project cost factors [13]. In

addition, a lot of past information about past projects is required

whereas in some situations there may be no similar projects

developed in the past to compare with.

3.1.3 Price-to-win, Bottom-up and Top-up

Price-to-win estimation method is based on customer budget

instead of software parameters or features. Example is when a

customer is willing to pay for 6 persons-month and the project

estimate is 8 persons-month then estimation is done as per the

customer ability to pay. This may cause delays and force

developers to work overtime [13]. Price-to-win method helps in

getting the contract but it generally causes cost and time overruns.

Bottom-up estimation method estimates by separating each

software component then summed to give the overall estimate for

the product. It is possible only when the requirements and design

of the system are known at an early stage of software development

[11] [14]. While top-down method established an overall estimate

for the project then the system is sub-divided into its functional

components which are then estimated based on the overall estimate

[13] [14]. The design and requirements must be well defined to

partition software to its component.

3.1.4 Wideband Delphi

Wideband Delphi method is a cost estimation technique where

effort and cost are estimated centered on team consensus. It is done

by getting advices from experts who have extensive experiences in

similar projects. Wideband Delphi technique was introduced by

Barry Boehm and John Farquher in 1970s. It uses work breakdown

structure as the basis for estimating project size, effort and cost [12]

[15]. This method emphasizes on consultations, communication

and interaction among participants.

Participants include customer representatives and technical team

members that will be involved in development of the software

product. Each member estimates for each task and identify changes

and missing assumptions in work breakdown structure. Members

with high or low estimates are asked to justify, and then members

revise the estimates. The cycle repeats until when estimators agree

on the estimates. The coordinator collects estimates from team

members and assembles the tasks and estimates into a single final

task list.

Wideband Delphi depends on team members experience and

agreement among members and thus it is not appropriate method

when applied to a software project that is unfamiliar to members

[14] [15]. Furthermore, it is a preferred method when requirements

are well defined and therefore, cannot work for software

development methodologies where requirements are not clear.

However, it encourages collaboration among estimators. Lastly, the

technique is simple to apply and supports consensus-based

estimates. Even though Wideband Delphi estimates are consensus-

based, experts may be biased, optimistic or pessimistic in their

estimation given that this method cannot be quantified.

3.2 Algorithmic software cost estimation methods

These models use a formula to calculate the software cost estimate

[13]. They rely on a combination of related cost factors which are

input to mathematical equation to do the estimation. Most common

algorithmic software cost estimation methods includes Source line

of codes (SLOC), Object points, Function-Point(FP)[3],

Constructive Cost Model-I (COCOMO-I) [4] and Constructive

Cost Model-II (COCOMO-II) [5].

3.2.1 Source line of codes (SLOC)

Source line of codes is a size metric that illustrates the number of

program statements and data definition but does not include

comments. SLOC is the earliest cost estimation method used to

estimate the size of FORTRAN and assembly language which are

line based programming languages. SLOC uses historical data of a

previously completed project of the same size whose SLOC was

computed before then compared with the actual one to estimate

project size. The size estimate is eventually used to estimate the

project scope, effort and cost [10]. SLOC is dependent on the

programming language and therefore cannot compare different

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 9, 612-618, 2016, ISSN:-2319–8656

www.ijcat.com 614

programming language lines of codes. Source line of codes cannot

estimate the size of non-procedural languages and software
complexity is not taken into consideration when estimating size.

 3.2.2 Function Point Analysis

Albrecht’s introduced Function point analysis method in 1983 [3]

which had better estimation than source lines of codes. Function

point is a size metric that quantifies the size and complexity of a

software system with regard to functions that the system will

deliver. Function count is arrived at by counting the basic software

components which include external inputs, external outputs,

external inquiries, logical internal files and external interfaces.

Each of the function is weighed by complexity factor ranging from

low, average to high [3] [11] [14]. Each function component is

multiplied with a respective complexity level then summed up to

give Function Count (FC).

Function point can be applied at requirement specification or

design phase of system development [14]. Furthermore, function

point is independent of language or methodologies used in software

development [3]. Lastly, Non-technical user can easily understand

the method. However, Function point cannot be used in situation

where requirements are not clear such as in agile software

development.

3.2.3 Object Point

It estimates the size of software based on number and complexity

of objects [11] [17]. The objects are screens, reports and 3GL

components. The steps for estimation effort using object point

include: counting the number of objects, classification of objects

(simple, medium, average), weight objects with regard to difficulty

as shown in table 1.

Table 1: Classification of objects weight

Object type Simple Medium Difficult

Screen 1 2 3

Report 2 5 8

3 GL

components

 10

Object point is determined by adding all the weights of object

instances to get object point count.

Estimate percentage re-use then compute the overall object points

(NOP) where, NOP = (Object Point) * (100-% reuse)/100

Furthermore, developers’ productivity is weighted from low to

highest then effort is estimated by dividing net object point by

productivity [11]. It is easy to apply object point method at any

stage of software development but on the other hand requirements

must be well defined. Object point only considered 3GL and 4GL

factors and thus cannot apply to current programming languages.

3.2.4 Constructive Cost Model (COCOMO)

COCOMO models were proposed by Barry Boehm [4]. These

methods use parameters which were derived from previous

experiences about software projects for estimation. Due to

COCOMO methods popularity various studies have extended

COCOMO framework to develop cost estimation methods with an

aim of improving software estimation accuracy. The 4 COCOMO

methods are simple COCOMO, Intermediate COCOMO, Detailed

COCOMO and COCOMO II.

Basic COCOMO computes software effort and cost as a function

of program size expressed in thousands lines of codes (KLOC)

using the formula:

 Effort = a(KLOC)b

Where a and b are complexity factors which are assigned weights

according to software project complexity as shown in table 2.

Table 2: Complexity factor weights

Model A B

Organic (Simple) 2.4 1.05

Semi-detached(Average) 3.0 1.15

Embedded (Complex) 3.6 1.20

With the advancement in software development methods and

environment, basic COCOMO was not able to capture all relevant

cost factors in its estimation. Therefore, intermediate COCOMO

was released to include emerging software attributes in their

computation of software estimates.

Intermediate COCOMO uses Kilo lines of codes as in basic

COCOMO but it includes EAF (Effort adjustment factors) which

includes subjective assessment of products, hardware, personnel

and project attributes [5] [13]. Effort adjustment factors consider a

set of four factors, with each factor having a number of attributes.

The complexity factors are hardware, personnel, project and

product with the following attributes.

 Hardware attributes: Run-time performance constraints,

Execution time constraint, Memory constraints,

Volatility of the virtual machine environment and

Required turnabout time.

 Personnel attributes : Analyst capability, Software

engineering capability, Applications experience, Virtual

machine experience, Programming language experience

 Project attributes: Use of software tools, Application of

software engineering methods and required development

schedule.

 Product attributes: Required software reliability, Size of

application database and Complexity of the product,

required reusability.

Each of the 17 attributes is rated on a 6 point scale that ranges from

very low to very high. Based on the rating, an effort multiplier is

determined and the product of all effort multipliers results is an

effort adjustment factor (EAF). Typical values for EAF range from

0.9 to 1.4 The intermediate COCOMO model takes the form

EFFORT = a* (KLOC)b * EAF.

Another COCOMO version is detailed COCOMO which

incorporates all characteristics of intermediate COCOMO on each

step of software development process (Analysis, Design, coding

and testing). The 17 attributes are used in each step to estimate

software development effort [5] [10] [11] [13].

COCOMO-II was introduced in 1997 is an extension of

intermediate COCOMO. It predicts the amount of effort based on

Person-Month (PM) in the software projects [5][13]. It uses

Thousands lines of code or function point as the size metrics and

the number Effort adjustment factors attributes were increased by

5 to 22 attributes. The Usage of COCOMO II is very wide and its

results usually are more accurate. The 5 additional effort

adjustment factors are:

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 9, 612-618, 2016, ISSN:-2319–8656

www.ijcat.com 615

- Precedents’(PREC)- Previous experience of the

organization

- Development Flexibility (FLEX) –Degree of flexibility

in development process.

- Risk resolution (RESL)- Extent of risk analysis carried

out.

- Team cohesion (TEM)- How well development team

knows each other

- Process maturity (PMAT)- Process maturity of the

organization

COCOMO II formula takes the same format as intermediate

COCOMO formula of estimating effort [5] [10] [11].

All COCOMO methods capture a wide range of parameter when

estimating the cost of a project. So far COCOMO methods are the

most popular methods with clear results. The use of COCOMO

requires clear and well defined requirements [16]. However, a lot

of data is required to estimate effort and the model is presented as

black box to the user. However, COCOMO methods are challenged

when requirements are not clear and when the project is subject to

user request changes at later stages of software development.

3.2.5 Other software cost estimation methods

In recent years researchers have attempted to introduce more cost

and effort estimation techniques to improve on estimation

accuracy. One of the methods is Bayesian Belief Network which

estimate software effort by forecasting software cost when

information about the past and present is incomplete, vague and

uncertain [18]. It includes a network of probabilities that captures

the probabilistic relationship between variables in historical data

[11]. The advantage of this method is not being dependent on

knowing exact historical data. On the other hand, it requires

knowledge of related parameters of previous project to be used in

estimation.

The other method is Neural Networks which is based on the

principle of learning from examples. Neural network use back

propagation trained feed forward network to estimate software

development effort [17] [11]. The network is trained with a series

of inputs from previous projects to predict the effort of the current

project. Neural network provided a more accurate estimate

compared to other methods but it depends on data from previous

projects.

4. AGILE COST ESTIMATION METHODS
The emergence of agile methods has presented many opportunities

and challenges. One of the challenges is estimating the effort of

developing agile software. Although traditional methods are used

to estimate effort for agile software, they provide inaccurate results.

Agile is a popular development method as it emphasize on

collaboration with customer, communication among developers,

rapid delivery of software and change of requirements on demand

[20] [21]. Popular agile methods are Extreme programming, scrum,

crystal, Feature driven development and learn development.

Some of the challenges of estimating agile methods include work

assigned to a team and not an individual, emphasis is on collective

effort and work is quantified in terms of effort rather than time and

changing requirements on demand. Various studies were done in

recent years and have come up with cost estimation methods suited

for agile with the most popular one being planning poker [6].

Planning poker is a non-algorithmic method and is simple to

implement. Other agile estimation methods introduced so far are

constructive agile estimation algorithm [8] and AgileMOW [7]

although their accuracy has not yet been calibrated by other

researchers.

4.1 Planning Poker

Planning poker is an estimation method that is based on

collaboration and consensus among team members like Wideband

Delphi technique. It was initially proposed by Greening in 2003

and popularized by Cohn in 2005 [6] for agile software

development such as scrum. Planning poker session is done at the

beginning of an iteration of agile development involving a team of

developers from different disciplines.

Each member in the team is given a deck of planning poker cards

with values preferably Fibonacci sequence (1, 2, 3, 5, 8, 20, 40,

100) representing story points or ideal days. The nonlinear

sequences reflect less uncertainty with smaller units and greater

uncertainty when dealing with greater units [6]. A story in agile

development is a brief description of functionality as viewed by the

user or product owner. Story points are a relative unit of measure

used to estimate the story size by taking into account effort,

complexity and risk [19]. On the other hand, ideal days estimate a

story with regard to the number of days or time it will take to

translate a story to a system function or feature.

When a story has been fully discussed, each member privately

estimates a story by selecting a card to represent the estimate. All

cards are revealed at the same time and if the estimates are the

similar then it becomes the agreed estimate. If not, high and low

estimates are justified and discussed further. Then each member

selects a card after the discussion and cards are revealed again. The

process is repeated until consensus is achieved [19]. Two main

reasons why planning poker is an effective way of estimating agile

software is that it involves a team of experts from different

disciplines who collaborate and justify their estimations to come

with better results as compared to one expert providing estimate

especially when there is high uncertainty and missing information.

4.2 Constructive Agile Estimation Algorithm

Constructive agile estimation algorithm was introduced in 2009 [8].

The algorithm uses vital factors namely project domain,

performance, configuration, data transaction, complex processing,

ease of operation and security which are weighed then incorporated

in the estimation.

Constructive Agile Estimation algorithm divides estimation

process into two phases called early estimation and Iterative

estimation. The purpose of early estimation is to identify the initial

scope just enough to draw the initial budget. Iterative estimation is

done at the start of an iteration to include new requirements. In both

cases story point is used to estimate the size of a feature as

described by the user. Vital factors are identified on the grade of

low, medium and high using Fibonacci series then multiplied to

story point to get the final estimate.

Constructive Agile estimation algorithm identified factors that are

critical in determining software effort but in addition people factors

are also important especially in agile where collaboration and

teamwork is an important ingredient for successful completion of a

software project but they are not included in this algorithm.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 9, 612-618, 2016, ISSN:-2319–8656

www.ijcat.com 616

4.3 AgileMOW

AgileMOW was introduced to estimate the cost of developing web

applications using agile methods [7]. This method uses both expert

judgment and algorithm to estimate effort. AgileMOW uses people

and environment attributes described in COCOMO II which are

aligned to agile manifesto. Factors used in this method include

communication skills, proximity of team, feedback, courage,

management skills, technical ability, reliability, ease of use and

early delivery. The method use web objects to estimate size of a

web application and people factors are weighed. Effort expressed

in person-month is computed by multiplying web application size

and weighted people and environment factors.

On main advantage of AgileMOW is that it identifies factors that

align to the principles of agile software which focuses on

communication and interaction. However, it cannot estimate the

cost of other software rather than web application. Lastly, the

method only focused on people factors whereas other factors such

as product and process factors are also important when estimating

agile software effort.

5. DISCUSSION
None of software cost estimation method is better or worse than the

other, each has its own strength and weakness which are

complementary to each other. Furthermore, software estimation

methods are specific to a specific type of project or development

method or software to be developed [5] [15]. Estimation methods

such as Function point analysis, Object point and COCOMO are

suitable when developing software in which requirements are fully

known upfront such waterfall method. In contrast, these methods

are challenged when requirements keep on changing such as in

agile which require an estimation method that adapt to changes in

such as planning poker estimation method.

Different situations and development environment determine the

appropriate software cost method to be used. There are situations

where accuracy in estimation is critical then a more accurate

method should be employed, in other instance, winning a contract

is important therefore, price-to-win becomes the most appropriate

method [11]. Furthermore, small projects can easily be estimated

using expert judgment but when the project becomes larger it

requires more technical estimation method such as analogy and

COCOMO. In addition, availability of data from previous project

provides an opportunity to use analogy estimation method.

Several cost drivers should be considered to estimate software

effort and cost. The most common cost driver among all estimation

methods is the software size. Effort and cost can be estimated

directly upon estimating the software size using one of the software

size metrics such as source lines of codes, function point and object

point. Agile size estimation is done using story point. Size is also

used together with other factors to estimate software development

effort when using most of algorithmic estimation methods.

Therefore, software project managers must understand the key

attributes in a project to identify an estimation method that will

estimate accurately.

Each effort and cost estimation method has strengths and

weaknesses based on the capabilities of the method. Table 4 shows

a summary comparison of popular cost estimation methods.

Table 4: Comparison of software effort estimation method

Method Strength Weakness

COCOMO - Clear results

- Independent on

programming

language

- Much data required

- Requirements must

be clear.

- Not adopted to

changes in

requirements

Function

point

- Clear results

- Independent on

programming

language

- Requirements must

be clear.

- Not adopted to

changes in

requirements

Expert - Less data required

- Adopt to special

projects

- Its success depend on

the expert

Analogy - Based on similar

project experience

- More accurate

- Information about

past projects is

required

- Historical data may

not be accurate

Price-to-

win

- Gets contract - High overruns

Top-down - Faster to implement

System level focus

- Minimal project

details required

- Less stable

- Less detailed

Bottom-up - Based on detailed

analysis

- Support project

tracking

- Difficult to estimate

early in the life cycle

- Time consuming

Wideband

Delphi

- Reduced biasness

by involving a team

of experts

-Its success depend on

the expert

-Not adopted to

changes in

requirements

Planning

Poker

- Adopt to changes in

requirements

- Reduced biasness

by involving a team

of experts

- Its success depend on

team of experts

- Estimation is relative

to a team.

6. CONCLUSION
This paper provided a comprehensive overview of existing

software cost estimation models describing their strengths and

limitations. It is important for the software project manager to

understand key factors relevant in estimating the cost of software

and situations where an estimation method will be appropriate. No

existing model can estimate the cost of software development with

a high degree of accuracy, therefore the study of software cost

estimation is necessary to improve on estimation accuracy.

With the emergence of new software development methods and

techniques, future work will be to identify key estimation indicators

in new software development methods and devise new cost

estimation method.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 9, 612-618, 2016, ISSN:-2319–8656

www.ijcat.com 617

7. REFERENCES

[1] The Standish group, 2013, Chaos Manifesto: Think big,

Act small, The Standish Group Intenational.

[2] Coelho, E.,Basu, A.,2012, Effort Estimation in Agile

Software Development using Story Points, International

Journal of Applied Information Systems.

[3] Albrecht, A.J., Gaffney, G.E., 1983, Software Function,

Source lines of Codes, and Development Effort

Prediction: A Software Science Validation, IEEE Trans

Software Engineering.

[4] Boehm, 1981, Software Engineering Economics,

Prentice Hall.

[5] Boehm, B.W. et al, 2000, Software Cost Estimation with

COCOMO, Prentice-Hall.

[6] Cohn, M.,2006, Agile Estimating and Planning, Pearson

Education

[7] Litoriya, R., Kothari, A.,2013, An Efficient Approach for

Agile Web Based Project Estimation: AgileMOW,

International Journal of Computer Science and Computer

applications.

[8] Bhalerao, S., Ingle,M.,2009, Incorporating Vital factors

in agile estimation through algorithmic method,

International Journal of Computer Science and Computer

applications.

[9] Ziauddin, Tipu, S.K., Zia, S., 2012, An Effort Estimation

Model For Agile Software Development, Advanced

Computer Science and Its Applications.

[10] Khatibi, V., Jawawi, D.N., 2010, Software Estimation

Methods: A review, Journal of Emerging Trends in

Computing and Information Sciences.

[11] Borade, G, J.,Khalker, R,V.,2013, Software project effort

and cost estimation techniques, International Journal of

Advanced Research in Computer Science and Software

Engineering.

[12] Gandomani, T.,Wei, T., Binhamid, K., 2014, Software

Cost Estimation Using Expert Estimates, Wideband

Delphi and Planning Poker Technique, International

Journal of Software Engineering and its applications.

[13] Kumari, S., Pushkar, S., 2013, Performance Analysis of

software cost Estimation methods: A Review,

International Journal of Advanced Research in Computer

Science and Software Engineering.

[14] Sharma, N., Bajpai, A., Litoriya, R., 2012, Software

Effort Estimation, International Journal of Computer

Science and Applications.

[15] Stellman, A., Greene, J.,2005, Applied Software Project

management, O’Relly Media.

[16] Basha, S.,Dhavachelvan, P.,2010, Analysis of Empirical

Software Effort Estimation Model, International Journal

of Computer Science and Information Security.

[17] Bogdan, S., 2003, Software Development Cost

Estimation Methods and Research trands”, Computer

Science.

[18] Angyan Y., Charlottesville, 2003, A Bayasian Belief

Network approach to certifying Reliability of COTS

software systems”, Annual Reliability and

maintainability Symposium, IEEE.

[19] Calefato, F., Lanubile, F., A Planning Poker Tool for

Supporting Estimation in Distributed Agile

Development, The Sixth International Conference on

Software Engineering Advances

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 9, 612-618, 2016, ISSN:-2319–8656

www.ijcat.com 618

[20] Cao, L., 2008, Estimating Agile Software Project Effort:

An empirical study, Association of Information Systems

AIS Electronic Library(AISeL), Americas Conference

on Information Systems.

[21] Schmietetendorf, A., Kunz, M., Dumke, R, 2008, Effort

Estimation for Agile Software Development Projects,

Proceedings 5th Software Measurement European

Forum, Milan

http://www.ijcat.com/

