
International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

DOI: 10.5121/ijsea.2019.10206 67

SIZE METRICS FOR SERVICE-ORIENTED

ARCHITECTURE

Samson Wanjala Munialo1, Geoffrey Muchiri Muketha2 and Kelvin Kabeti

Omieno3

1Department of Information Technology, Meru University of Science and technology,

Kenya
2Department of Information Technology, Murang’a University, Kenya

3Department of Information Technology and Informatics, Kaimosi Friends University

College

ABSTRACT

Determining the size, effort and cost of Service-oriented Architecture (SOA) systems is important to

facilitate project planning and eventually successful implementation of a software project. SOA approach is

one of the recent software architectures that allow integration of applications within and outside the
organization regardless of heterogeneous technology over a distributed network. A number of research

studies have been done to measure SOA size.However, these studies are not based on software metrics

rendering them to be ineffective in their estimation. This study defined a set of SOA size metrics based on

Unified Modelling Language (UML). The study employed Briand’s theoretical validation to test the validity

of the designed SOA size metrics. Findings from this study will provide metrics to measure SOA size more

accurately and form a basis for future software engineering researchers to develop more effective and more

accurate size metrics and effort estimation methods.

KEYWORDS

Service-oriented Architecture, Web services, software metrics, Unified Modelling Language, effort

estimation.

1. INTRODUCTION

The ability to measure size and estimate software effort precisely contributes to better

management of IT projects and more so software systems. One of the key indicators to be

considered when estimating software development effort and cost is software project size. The

size of the software project determines the scope and is modelled as the main input when
estimating development effort and cost. Software size metrics are standards of measure of the

degree to which a software system possesses size-based properties [1]. The goal of using size

metrics in software engineering is to obtain objective and quantifiable measurements which may
have valuable applications in estimating software development effort. Software developers and

Software project managers must tell how big a software project is before estimating software

development effort and cost.

Software developers have had the interest of measuring accurately the size of software products.

Earlier metrics were based on software lines of codes or function points to estimate the size [2].

However, demand for new functionalities and inclusion of new features such as software re-use,
distributed systems and iterative development has established a need for new software size

metrics.

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

68

Service-oriented Architecture (SOA) is an example of a popular paradigm for developing

distributed systems that provides a challenge to existing software size metrics. SOA consists of
service providers which are elements that offer services to be used by other service users. The

need for agility, cost-effectiveness and efficiency, adaptability and legacy leverage in the rapidly

changing business environment has led many organizations to migrate to SOA applications. SOA

other benefit include clear separation of services from implementation which allows service
upgrades to occur without overhaul of the entire system and less impact on service users [3].

SOA is an important aspect of organization’s IT infrastructure as it links all applications and

services that support business processes. SOA is a paradigm shift in designing information
systems where services corresponding to business functions are published in form of standard

interface to be discovered by other services [4].

Size measurement has been identified as one of the key attributes in software estimation [5].

Measuring SOA systems size is difficult because SOA comprise of integration among services

within and outside the organization regardless of heterogeneous technology and programming

language over a distributed network. Some of the most frequently used software size metrics in
use since 1980’s includes Source Line of Code (SLOC) and Function Point [6]. These metrics are

challenged when dealing with SOA characteristics such as loose coupling, SOA internal structure,

service composition and messaging. This prompted the introduction of SOA metrics such as
number of service count, and service interface count [6] [7] [8] [9][10] which are complexity

metrics rather than size metrics and they are not weighted appropriately with regards to SOA size.

In addition, COSMIC- SOA size metric was introduced to measure SOA size. This metric

howeverrelies on counting the amount of data movements among services to measure SOA
system size disregarding other size based attributes. Therefore, there is a need to introduce

metrics that will take into consideration multiple size attributes that can be measuredin SOA.

This paper seeks to define a suite of size metrics that will be used to measure the size attributes of

SOA software based on UML interface and sequence diagrams. It provides an analysis of existing

software size metrics and use a case example to illustrate the defined metrics.Lastly, theoretical
validation of the proposed metrics isbased on Briand’s size properties framework.

2. RELATED WORK

Over the decades, software development processeshave transformed from structured designs such
as the waterfall to new approaches such as agile, component-based, software re-use and service-

oriented architecture. This transformation resulted to increase in software size, and complexity.

Software effort factors have also changed over time due to evolution in software practices [8].
Software size has been the main software effort indicators since early 1980’s with the

introduction of Source Lines of Codes (SLOC) and Function Point analysis metrics to measure

software size. Later on, Modular programming paradigm such as object-oriented programming

shifted researcher focus from lines of codes to internal structures and relationships among
modules as the main attributes when measuring software size. Existing SOA metrics such as

number of service count, service interface count [9] andfunctional size measurement method for

SOA[12] were built on the foundation of earlier programming architectures.

SLOC is a parametric used to measure the size of a program by counting the number of lines of a

program’s code [10]. The goal it to measure the amount of intellectual work put into program
development. SLOC is dependent on programming language platform, and therefore, it is

inadequate when dealing with heterogeneous systems developed using different programming

platforms such as SOA. Software effort estimation methods that use SLOC as size metrics include

the four versions of COCOMO models.

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

69

Function Point metric measures the number of functionality in a software application [10].

Function Point metric is independent on programming language and it is arrived at by counting
the number of five basic software components including external inputs, external outputs, logical

internal files,external interfaces and external inquiries. Each of the function is weighed by

complexity factor ranging from low, average to high [10]. Each function component is multiplied

with a respective complexity level then summed up to give Function Count (FC). Function Point
can be applied at requirement specification or design phase of system development life

cycle.Function point works best when requirements are well defined and there is certainty on the

structure of system to be developed.

SeveralFunction Points have been introduced since 1985 including Mark II Function Points, 3D

Function Points, COSMIC full Function Points, De-Marco Function Points and Feature Function
Points [11] and has been reviewed further by the International Function Point User Group

(IFPUG). However, most Function points versions do not capture SOA features such as loose

coupling, distributed systems and how to estimate different types of services. This prompted

adjustment of traditional Function Points to take SOA features into consideration [12]. They
introduced a Function Point version calibrated to meet SOA features by adjusting data

communications, distributed data processing, performance, and heavily used configuration to

match SOA characteristics. Based on case studies involving three projects the proposed function
point method returned more accurate results as compared to the traditional function point

method[12]. However, service type, service structure and dependency were not captured and

detailed analysis of the method was not documented.

Object-Oriented programming shares a number of properties with SOA and component-based

systems including the separation of tasks into methods or operations, cohesion and other

properties. Similarities between object-oriented and SOA properties have prompted a number of
SOA metric researchers to adopt object-oriented metrics. Traditional object-oriented metrics were

used to measure SOA complexity attributes [6]including the Weighted Methods Count (WMC)

[13] which counts the number of weighted methodsbased on McCabe’s cyclomatic complexity
[14]. Other metrics adopted by SOA researchers from Object-oriented are coupling and cohesion

metrics. Furthermore, Object-oriented designs tool such as UML is widely used to represent SOA

design. A case in point is Service-oriented Architecture Modeling Language (SoaML) [15] which

is an extension of UML.

Existing SOA complexity and size metrics include Weighted Service Interface Count (WSIC),

number of services metrics and COSMIC-SOA metrics. WSIC was proposed to measure the
number of exposed interfaces or operations as defined in the Web service description language

(WSDL) documents [7]. WSIC returns the number of operations in a service based on the

hypothesis that the higher the number of service operations the more complex a SOA will be.
WSIC provided an insight on the relevance of operations as an attribute in determining SOA

complexity. However, empirical analysis was not done to validate the metric, it focuses on SOA

complexity rather than size and other attributes such as operation parameters are not captured in

the metric. Number of services (NS) metric is a simple count of services contained in a SOA
system [6][7] [9]. No empirical validation study was associated with this metric in these studies.

The major limitation with this metric is that it simply countsthe number of services and disregards

the fact that these services could be having different complexity and features.

COSMIC-FFP (Common Software Measurement International Consortium-Full function Points)

was introduced to measure functional size of software. COSMIC measurement metrics involves

applying a set of models, principles, processes and rules to measure functional user requirements
of a given software which will result to the function size of software [18]. The group has

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

70

published several metrics which include COSMIC-FFP for web applications and COSMIC-SOA

for SOA based projects.

COSMIC principle states that the main programming efforts are dedicated towards handling of

data movements from/to the storage and users [19]. COSMIC metrics require a definition of the

context model for a specific application with clear boundaries separating the software from its
operating environment. Each data movement crossing the boundary is counted to give the full

function points. The data movements are classified as Entry, Exit, Read and write. One advantage

of COSMIC is the ability to estimate software size of big projects by counting the amount of data.
However, COSMIC methods focus more on data movement rather than considering SOA size

attributes such as operations, dependency and number of services.

3. SOA SIZE METRICS

This study considers SOA internal structure, data movement, interaction and relationship among

services as key attributes for defining SOA size metrics[20][21]. The level of abstraction is based

on UML static (design-time) design and run-time (dynamic) design. Static metrics are taken from
design phase level while dynamic metrics are derived when designing the system run-time model

[22][23]. SOA being an architectural style that enables development of services that are modular

and integrated can be represented at different levels of abstractions using UML diagram and other
extensions of UML such as SOAML [15].

This study defines four metrics namely Weighted Operation Count (WOC), Service Dependency

Count (SDC), Weighted Service Count (WSC) metric at static level exposed through SOAML or
UML class diagrams and Weighted Message Count (WMC) metrics at run-time level exposed

through UML sequence diagram. Furthermore, SOA size attributes are classified into two

categories namely service level metrics and systems level metric. WOC, SDC and WMC are
service level metrics while WSC metric is a systems level metric.

3.1 Weighted Operation Count (WOC)

Weighted Operation Count (WOC) metric evaluates the internal structure of an individual service

by counting the number of operations or methods contained in a service based on their
complexity. WOC takes into consideration the number of operations, operations’ complexity and

operations’ parameters to determine the size of a service.

Definition

WOC is defined as a set of operations in a service and a set of parameters contained in an

operation.

Therefore, 𝑊𝑂𝐶(𝑆) = < 𝑂, 𝑃 > 𝑤ℎ𝑒𝑟𝑒 𝑂  S  PO

S denotes a service, O is a set of operations and P is a set of parameters in an operation. WOC is
based on the hypotheses that the more the number of operations and complexity of operations the

greater the size of a service. Consequently, it takes more effort to construct a service with more

and complex operations as compared to a service with fewer and simple operations. WOC metric

takes into account the number of parameters in an operation as an indicator of more processes to
be done by the operation. The WOC metric counts the number of operations weighted according

to their complexity and the number of parameters in an operation as shown below.

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

71

𝑊𝑂𝐶(𝑆) = < 𝑂, 𝑃 >= ∑(𝑂𝑖 + 𝑃𝑖)

𝑛

𝑖=1

This study adopted Albrecht’s Function Point Analysis metric [10] weights of related software

attributes which were validated and have been used over time by the industry. Based on

Albrecht’s Function Point Analysis method [10] Internal Logical files (ILF) attribute, this study
assigned weights of 5 to simple operation, 7 to average operation and 10 to complex operation as

shown in Table 1. In addition, a weight of 1 is allocated to each parameter contained in an

operation.

Table 1: Service Operation weight

 Operation type Examples Weight
Simple Get/ Write operation, Arithmetic Calculations,

Simple decision making process
5

Average Operations based on simple algorithm e.g. Searching,

sorting.
7

Complex Operations based on intelligence techniques,

decision support algorithm.
10

WOC is a service level metric captured at static level design based on SOAML service interface
diagram which reveals operations and parameters graphically. A sample of SOAML service

interface diagram showing service operations and parameters is as shown below in Figure 1.

Figure 1: Service interface diagram

The proposed Weighted Operations Count (WOC) considers a service interface X in figure 1,

containing two operations namely +simpleOperation1() with 2 parameters and
+averageOperation2() with one parameter.

𝑊𝑂𝐶(𝑆) = < 𝑂, 𝑃 >= ∑(𝑂𝑖 + 𝑃𝑖)

𝑛

𝑖=1

WOC(X) = simpleOperation1() + averageOperation2() web service points

simpleOperation1() = O + P = 5 + 2 = 7 web service points

averageOperation2() = O + P = 7 + 1 = 8 web service points

WOC (X) = 7+8 = 15 Web service points

The size of service X based on its internal structure as revealed by SOAML service interface
diagram is 15 web service points according to WOC metrics.

Service X interface

+ SimpleOperation1(parameter1, parameter2)

+ AverageOperation2 (parameter1:datatype)

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

72

3.2 Service Dependency Count (SDC)

Service dependency also known as coupling is the degree of interaction and extent of dependency

between services [16]. This study identified Service Dependency attribute as an indicator of web

service size measurement. A service-oriented principle states that services should be “loosely

coupled” meaning the nature of interaction should be limited to solely exposing operations for
interaction with other services. The study defined Service Dependency Count (SDC) Metrics to

count the number weighted dependencies in relation to the size of a service based on WOC.

SDC captures dependency attributes from UML static design class diagram at service level. SDC

focuses on direct dependency which is dependency that exists between a service provider and a

service consumer. Based on this study hypothesis, a service with more interaction will have more
configurations to link to other services as compared to a service that is linked to fewer services.

Implying that a service is bigger in size when it depends on more services or other services

depends on it and more effort is spent when configuring a service dependency.

SDC takes into consideration fan-in and fan-out dependency by counting fan-in dependencies as

one dependency given that a common configuration in the provider-side will enable connection

from various consumer services. Fan-in dependency has a higher weighting of 4 as compared to
fan-out dependencies. On the other hand, fan-out considers the number of dependencies and how

deep services are related also known as service composition. Service composition is a collection

of related services that take part in solving a specific business function [6].

Services that are not in composition are said to be atomic in which case they do not require other

services to complete a business process. When the relationship between services in a composition

is deep then the type of composition is strong composition or else the composition is lighter
aggregation. Fan-out dependency attributes according to UML representation are classified based

on service composition as atomic point-to-point message exchange, lighter aggregation and

strong composition weighted 1, 2 and 3 respectively as shown in Table 2.

Table 2 Weighted Service Aggregation table

Composition type Weight (Points)
Atomic (point-to-point dependency) 1
Lighter aggregation 2
Strong composition 3

Definition

WDC is defined as a set of types of dependencies among services.

Therefore, 𝑆𝐷𝐶 (𝐴) = < 𝑆, 𝐷 > 𝑤ℎ𝑒𝑟𝑒 𝑆  𝐴  𝐷  𝑆

Where A is a service-oriented Architecture application, S is a service and D represent sets of

dependencies.

Given a service X, 𝐷(𝑋) = < 𝐼𝑥, 𝑂𝑥 > and 𝑆(𝑋) = 𝑊𝑂𝐶(𝑋).

D(X) is a set of dependencies on a service X, I is the fan-in dependency node and O is a set of
fan-out dependency nodes of a service X. Fan-out dependency is classified into atomic, lighter

aggregation and strong aggregation.

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

73

Therefore, 𝑂 = < 𝑎, 𝑔, 𝑡 >

a is a set of Atomic dependency, g is a set of lighter aggregation dependency and t is a set of

strong aggregation dependency.In reality, codes that provide functions to link to other services
takes a fraction of a service size.Therefore,

𝑆𝐷𝐶 = 𝑆(𝐷/(𝐷 + 𝑆))

Atomic dependency is indicated by a dotted arrow in UML diagram while lighter aggregation and

strong composition are denoted by a light diamond arrow and a dark diamond arrow respectively

as shown in UML class diagram in Figure 2.

Figure 2: UML Diagram showing dependency among services

Figure 2 represents 4 service interfaces with X service interface depending on W service interface

in an atomic dependency interaction as indicated by dotted arrow. Service X depends on service

Y in a strong composition relationship denoted by a dark diamond arrow. On the other hand,
service Z depends on service Y in a lighter aggregation relationship denoted by a light diamond

arrow and depends on X in an atomic dependency relationship. The proposed Service

Dependency Count (SDC) considers a service interface S, with dependencies D1 . . . Dn identified

in the static service interface UML diagram.

Therefore SDC for service X is, 𝑆𝐷𝐶(𝑋) = < 𝑆, 𝐷 > = 𝑆(𝐷/(𝐷 + 𝑆))

Based on WOC(X) in figure 1, 𝑆(𝑋) = 𝑊𝑂𝐶(𝑋) = 15 𝑤𝑒𝑏 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠.

𝐷(𝑋) = 𝑝 + ∑ 𝑎

𝑛

𝑖=1

+ ∑ 𝑔

𝑛

𝑖=1

+ ∑ 𝑡

𝑛

𝑖=1

= 4 + 1 + 0 + 3 = 8 𝑤𝑒𝑏 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠

𝑆𝐷𝐶(𝑋) = 𝑆(𝐷/(𝐷 + 𝑆)) = 15(8/8 + 15)) = 5.23 𝑤𝑒𝑏 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠

Where p is fan-in dependency with a weight of 4, a is atomic fan-out dependency weighted 1
points, g is lighter aggregation fan-out dependencies with a weight of 2 points and t is strong

Service W interface

+ operation ()

Service X interface

+ operation()

+ operation2()

Service Z interface

+ operation ()

Service Y interface

+ operation ()

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

74

composition fan-out dependencies with a weight of 3 points. Based on SDC, SDC(X) IS 5.23 web

service points which is a fraction of WOC(X).

3.3 Weighted Message Count

Weighted Message Count (WMC) represents movement of data groups between services,
databases and other applications. Weighted Message is a service level metric that takes into

consideration the type of message call classified as synchronous, asynchronous and reply

messages. In this regard, data movement specification is linked to the design of information
model which is represented by UML sequence diagram. Based on this study hypothesis, there is a

relationship between the number of messages in an application and the size of the SOA

application because is it takes a process to produce a message.

Furthermore, more weight is assigned to synchronous message call because it requires

coordination of events to enable message movements in unison. On the other hand, asynchronous

message call is assigned lesser weight due its simplicity in design, it does not return a value and
no coordination is required to facilitate data movement as compared to synchronous message call.

Lastly, reply message carries much lesser weight based on the fact that reply messages are based

on conditional tests that will provide error messages or acceptance messages. Weighted Message
Count (WMC) weights and arrows are illustrated inTable 3.

Table 3 Weighted types of process

Message type UML arrow line Weight

Synchronous 2

Asynchronous 1

Reply message 0.5

Definition

𝑊𝑀𝐶 (𝑆) = < 𝑀 > 𝑤ℎ𝑒𝑟𝑒 𝑀  𝑆

In this case, M represents a set of messages. M is made up of three types of messages that is
synchronous, asynchronous and reply message. Based on UML sequence diagram, data groups to

and from a service are identified as shown in Figure 3.

Figure 3: UML sequence diagram showing data movement

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

75

From the sequence diagram in Figure 3, WMC deals with message out disregarding incoming

messages based on the principle that it takes a process to produce a message. In this regard,
service X receives asynchronous massage a from the interface and reply message r from service

Y then processes the received messages to give out message aand s. Therefore a ands will be

counted as shown below.

𝑊𝑀𝐶(𝑋) = ∑ 𝑠

𝑛

𝑖=1

+ ∑ 𝑎

𝑛

𝑖=1

+ ∑ 𝑟

𝑛

𝑖=1

𝑊𝑀𝐶 (𝑋) = 𝑠 + 𝑎 + 𝑟 = 2 + 1 + 0 = 3 𝑊𝑒𝑏 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠

a = asynchronous message s = synchronous messages r = reply message
Given that asynchronous has a weight of 1, synchronous has a weight of 2 and reply message has

a weight of 0.5. The total WMC for service X is 3 web service points. Note that reply and

asynchronous incoming messages are not counted.

3.4 Weighted Service Count (WSC)

Weighted Service Count (WSC) metric simply sums output derived from WOC, SDC and WMC.

𝑊𝑆𝐶 = < 𝑊𝑂𝐶, 𝑆𝐷𝐶, 𝑊𝑀𝐶 >
Where,

- WOC is a set of all weighted operations and parameters contained in the operations.

- SDC is a set of all dependencies between a service and other services weighted with

regard to the type of composition.
- WMC is a set of all messages to and from a service weighted according to the type of

message.

WSC is a systems level metric whose attributes are derived from UML static design diagram.

WSC returns size of a service system and eventually the size of SOA application measured in

web service points.

Definition

𝑊𝑆𝐶 = < 𝑊𝑂𝐶, 𝑆𝐷𝐶, 𝑊𝑀𝐶 >

According to WSC hypothesis, the more the number of weighted services, dependencies and

messages contained in a SOA application, the bigger and more complex the SOA application will
be resulting to more effort required to build and integrate services.

Given service X in UML diagram in figure 1, 2 and 3,

 𝑊𝑆𝐶 (𝑋) = 𝑊𝑂𝐶(𝑋) + 𝑊𝐷𝐶(𝑋) + 𝑊𝑀𝐶(𝑋)

𝑊𝑆𝐶(𝑋) = 15 + 5.2 + 3 = 𝟐𝟑. 𝟐 𝒘𝒆𝒃 𝒔𝒆𝒓𝒗𝒊𝒄𝒆 𝒑𝒐𝒊𝒏𝒕𝒔

The same concept is applied to other service to calculate WSC for each service then summed to

give the total size of SOA application. A case in which the proposed SOA size metrics is applied

to a purchase order SOA system is discussed below.

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

76

4. PURCHASE ORDER SOA SYSTEM: A CASE STUDY

Based on SOAML design methodology, design of a SOA system starts with business process

modelling which involves capturing the business design from an understanding of business
requirements and objectives (Amsden, 2010). The business requirements and objectives are

translated into business process specification using Business Process Modelling Notation

(BPMN). Services are then identified from the business processes and service specifications are
captured through UML diagram to identify methods, data movement and relationship among

services.

With regard to purchase order process, a consortium of companies needed to align their purchase

order processes to business requirements. The Purchase order business processes include

managing purchase order, production scheduling, inventory management, shipping and invoicing.

The order process starts by receiving and processing the purchase order which includes items
description, items quantity and customer details. The purchase order provides information to

calculate the price of items, process production schedule and shipping details. Invoice is then

prepared by including the total cost of items, production cost and shipping cost.

To measure the size of purchase order process SOA system, Business Process Modelling Notation

was converted to UML diagram for a detailed and lower abstraction. UML diagram was used to
expose number of services, number of operations, number of parameters, type of relationship

among services and data movements among services in a SOA system as shown in Figure 5 and

Figure 6. WOC and SDC attributes were captured from UML interface diagram in Figure 5 while

WMC attributes were captured from UML sequence diagram in figure 6.

Figure 5: UML interface diagram representing purchase order process services

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

77

Figure 6 : UML sequence diagram representing purchase order process services

4.1 WOC for purchase order SOA system

Based on SOAML service interface diagram representing the purchase order SOA system in

figure 5, WOC considered the number of operations contained in each service, complexity of

each operation and the number of parameters as key attributes when determining the size of a
service with regard to a service internal structure. For example WOC for invoice service with two

operations with simple arithmetic calculation is classified as simple operations each allocated a

weight of 5. The first operation has 2 parameters and the second operation has 3 parameters.
Therefore,

𝑊𝑂𝐶 (𝐼𝑛𝑣𝑜𝑖𝑐𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒) = ∑(𝑜𝑖 + 𝑝𝑖)

𝑛

𝑖=1

 = (5 + 2) + (5 + 3) = 15 𝑤𝑒𝑏 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠

WOC for purchase service, production service, shipping service, inventory service and exchange
currency services are as shown in Table 4.

Table 4: WOC for purchase order SOA systems

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

78

4.2 SDC For Purchase Order SOA System

Secondly, SDC measured the size of a SOA system by considering the relationship among

services. SDC measured the number of fan-out, direct dependencies and type of dependency

between services as indicated by different types of arrows linking consumer services with
provider services.

For instance, invoice service in figure 5 depends on currency exchange service to perform
currency conversion, it depends on shipping service to provide shipping cost and production

service to provide production cost. Invoice service has one fan-in dependency and 3 fan-out

dependency and the types of fan-out dependency are one lighter aggregate dependency with a

weight of 2 and 1 atomic dependency allocated a weight of 1.

Therefore, 𝑆𝐷𝐶 (𝐼𝑛𝑣𝑜𝑖𝑐𝑒) = < 𝑆, 𝐷 > = 𝑆(𝑖𝑛𝑣𝑜𝑖𝑐𝑒) + 𝐷(𝑖𝑛𝑣𝑜𝑖𝑐𝑒)

 𝑆(𝑖𝑛𝑣𝑜𝑖𝑐𝑒) = 𝑊𝑂𝐶(𝑖𝑛𝑣𝑜𝑖𝑐𝑒) = 15 𝑤𝑒𝑏 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠.

𝐷(𝑖𝑛𝑣𝑜𝑖𝑐𝑒) = 𝑝 + ∑ 𝑎

𝑛

𝑖=1

+ ∑ 𝑔

𝑛

𝑖=1

+ ∑ 𝑡

𝑛

𝑖=1

= 4 + 2 + 1 + 0 = 7 web service points

𝑆𝐷𝐶 (𝑖𝑛𝑣𝑜𝑖𝑐𝑒) = 𝑆(𝐷/(𝐷 + 𝑆)) = 15(7/(7 + 15)) = 4.77 𝑤𝑒𝑏 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠.

SDC for purchase service, production service, shipping service, inventory service and exchange

currency services are as shown in Table 5.

Table 5: SDC for purchase order SOA systems

4.3 WMC for purchase order SOA system

Thirdly, WMC counted the number of message movements from a service based on the type of

message captured by the UML sequence diagram in figure 6 showing different types of arrow
lines representing different types of messages. For instance, according to the sequence UML

diagram in figure 6, invoice service provides1 one synchronous message, Therefore,

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

79

𝑊𝑀𝐶(𝑖𝑛𝑣𝑜𝑖𝑐𝑒) = ∑ 𝑠

𝑛

𝑖=1

+ ∑ 𝑎

𝑛

𝑖=1

+ ∑ 𝑟

𝑛

𝑖=1

 𝑊𝑀𝐶 (𝑖𝑛𝑣𝑜𝑖𝑐𝑒) = 2 + 0 + 0 = 2 𝑤𝑒𝑏 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠

Given that asynchronous has a weight of 1, synchronous has a weight of 2 and reply message has
a weight of 0.5.

Table 6: WMC for purchase order SOA system

4.4 WSC for purchase order SOA system

Lastly WSC will sum the results of WOC, WDC and WMC to give the final SOA size measure
for the purchase order SOA system.

𝑊𝑆𝐶 = 𝑊𝑂𝐶 + 𝑆𝐷𝐶 + 𝑊𝑀𝐶 73 + 20.33 + 10 = 103.33 𝑊𝑒𝑏 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠

The result reflects the size of purchase order SOA system based on attributes revealed by UML

interface diagram and sequence diagram.

5. Theoretical Validation

Metrics development involves 2 stages which include metrics definition and metrics validation

[23]. Metric definition is the actual design of the metrics through identification of key factors and

their contribution to the metric. On the other hand, metrics validation is determining the validity
of software metrics with respect to the domain under research. There are two types of software

metrics validity namely theoretical validity and empirical validity [24].

Theoretical validation confirms if a metric measures what it is supposed to measure by
considering that the new metric does not violate measurement theory. It establishes construct

validity by checking whether the new metrics are structurally valid and if the metric respects set

criteria as defined by the theory. Most popular theoretical validation frameworks in software
engineering include Weyuker’s properties and Briand’s properties. Weyuker’s properties

establish validity of software complexity metrics while Briand’s properties determine validity of

software size and length metrics [23][24]. Empirical validation on the other hand, proves that the

measured values are consistent with the values predicted by the new metrics.

In this study, Briand’s size properties [25] form the basis of theoretical validation. They proposed

a rigorous mathematical framework based on precise mathematical concept with regard to

software size, length and complexity measurements [25]. They defined a concept that takes into
consideration a system as an entity that has elements and relationships among elements.

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

80

According Briand’s size properties framework, the size of a system S is a function of size (S)

containing sets of elements (E) and sets of relationship among elements (R). The framework
defines three fundamental size properties that determine the validity of a software metrics. The

three properties include non-negativity, null value and module additivity summarized as follows:

Size Property 1: Non-negativity – The size of a system S is non-negative.

 𝑆 = < 𝐸, 𝑅 > 𝑤ℎ𝑒𝑟𝑒 𝑆 > = 0

Size Property 2: Null value – The size of a system (S) is null if elements (E) is empty.

 𝑆 = < 𝐸, 𝑅 > 𝑤ℎ𝑒𝑟𝑒 𝑆 = 0 𝑖𝑓 𝐸 = 0

Size Property 3: Additivity – The size of a system (S) is equal to the sizes of its elements.

 𝑆 =  (𝐸)

5.1 Weighted Operation Count (WOC) Theoretical Validation

Based on Briand’s size property framework, a software size metric should satisfy non-negativity,

null value and additivity properties to confirm a metric’s theoretical validity. In this respect,

WOC = < O, P> is non-negative such that the size of service operations and parameters cannot be

negative. Given a service S = <O,P> where O  S  P  O. WOC(S) involves counting the
number of operations and parameters which in this case cannot return a negative value. Therefore,

WOC(S)  0 satisfy Briand’s size 1 property which states that the size of a system is non-

negative.

Secondly, according to Briand’s size 2 property, a service must have an operation for its size to
count. According to WOC, a service size is determined by the number and complexity of

operations and parameters. WOC(S) = <O,P> such that if O=, then WOC(S) =  conforming to

Briand’s size 2 property which states that the size of a system is null if it has empty modules (E).

Thirdly, Briand’s size 3 additivity property requires that the size of a system should be equal to

the total size of all modules. With WOC case, the size of a service is equivalent to the sum of the
size of all weighted operations and parameters contained in a service. The size of a service (S)

according to WOC is not greater than the size of all operations contained in a service.

WOC(S) = M1+M2+ ….Mn. Where M1=<O1,P1>, M2=<O2,P2> and Mn=<On,Pn>

Where M represents a set of operations and parameters, O represents weighted operations and P

represents parameters. WOC metric meets Briand’s size 3 additivity property which demands the
sum of a system to be equal to the sum of all modules.

5.2 ServiceDependency Count (SDC) theoretical validation

SDC theoretical validation is based on Briand’s property framework to confirm the metric
validity. SDC conforms to Briand’s size 1 property given that SDC cannot return a negative value

as it involves adding weighted operation count and dependencies.

𝑊𝐷𝐶 (𝐴) = < 𝑆, 𝐷 > 𝑤ℎ𝑒𝑟𝑒 𝑆 𝐴  𝐷 𝑆.

Therefore, WDC (A)  0 because S0 and D0 where A represents SOA application, S

represents sets of services and D represents sets of dependencies. Given that the value of S is

equivalent to WOC(S), the value of S cannot be negative. Consequently, the value of adding

dependencies cannot return negative values.

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

81

Secondly, SDC meets Briand’s size 2 null value property because when there is no service (S),

SDC will return a null value. When S =  then SDC =. Thirdly, the value of SDC a is

equivalent to the sum of all services and dependencies of services. SDC (A) =

S1D1+S2D2+……… SnDn conforming to Briand’s size 3 additivity property which states that the
size of a SOA System (S) is equivalent to the sizes of its elements.

5.3 Weighted Message Count (WMC) theoretical validation

Weighted Message Count (WMC) considers the amount of message exchange among services as

indicator of size. WMC counts the number of weighted messages to determine the size of a
service. In this regard, If M represents message originating from a service, WMC (M) cannot

return a negative value therefore,

𝑊𝑀𝐶 = < 𝑀 >  0

WMC (M) satisfy Briand’s non-negativity property given that the size of a service is non-

negative as it results from summing messages from a service which cannot be negative. Secondly,

WMC metric returns a null value if there is null message originating from a service. Therefore,

𝐼𝑓 𝑀 =  𝑡ℎ𝑒𝑛 𝑊𝑀𝐶 (𝐴) = .

which conforms to Briand’s Null valueproperty which states that the size of a system (S) is null if

element (M) is empty. Thirdly, Briand’s size 3 property demands that the size of a system should

be equal to the sizes of its elements. WMC meets the size 3 property requirements given that, the

size of a service S is equal to the sum of the sizes of its messages. S= <M> is equal to the size of
S1 = <M1>, S2 = <M2> …. Sn =<Mn>.

5.4 Weighted Service Count (WSC) theoretical validation

Weighted Service Count provides a framework for summing up results from WOC, SDC and

WMC. Based on Briand’s size 1 non-negativity property, WSC cannot return a negative value

because all the WSC ingredients cannot return a negative value. Secondly WSC =  if WOC 

SDC  WMC =  conforming to the size 2 property. Lastly the size of a SOA application is

equivalent to the sum of all services WOC, SDC and WMC conforming to Briand’s size 3
property.

WSC (A) = WOC(S1), SDC(S1), WMC(S1) + WOC(S2), SDC(S2), WMC(S2) …… WOC(Sn),
SDC(Sn), WMC(Sn)

The size of a SOA application is a result summation of all services WOC, SDC and WMC.

6. CONCLUSION

Theoretical validation of the SOA size metrics proved the validity of the metrics in measuring

SOA size. The metrics derived from UML diagram provided a framework for identifying key
attributes relevant for measuring SOA size. The metrics were designed and applied to a purchase

systems example to show the metrics applicability. To establish construct validity, the metrics

were subjected to Briand’s property framework to establish if the metrics are structurally valid.

Later on in this study, an empirical validation will be carried out to prove that the metrics results
are consistent with the predicted results.

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

82

REFERENCES

[1] Coelho, E. &Basu, A., (2012) Effort Estimation in Agile Software Development using Story Points,

International Journal of Applied Information Systems

[2] Litoriya, R.,& Kothari, A. (2013) An Efficient Approach for Agile Web Based Project Estimation:

AgileMOW, International Journal of Computer Science and Computer applications.

[3] Farrag, A.E. &Moawad, R. (2014). Phased Effort Estimation of legacy Systems Migration to

SOA,International Journal of Computer and Information Technology.Ahmed, N.A., & Ahmed A.H.

(2012). Enabling Complexity Use Case Function point on SOA. 2013 International conference on

Computing, Electrical and Electronic Engineering.

[4] Seth, A., Agarwal, H., & Singla, A. (2010) Testing and Evaluation of Service Oriented Systems,

International Journal of Engineering Research and Application.

[5] Hirzalla, M., Cleland-Huang, J., &Arsanjani, A. (2009) A metrics Suite for Evaluating Flexibility and

Complexity in Service Oriented Architectures, ACM.

[6] Elhag, M, A., &Mohamad, R. (2014). Metrics for Evaluating the Quality of Service Oriented Design,

IEEE.

[7] Sharma, N., Bajpai, A., &Litoriya, R. (2012) Software Effort Estimation,International Journal of

Computer Science and Applications.

[8] Zhang, Q., &Li, X. (2009). Complexity metrics for Service-Oriented Systems, Second International

Symposium on Knowledge Acquisition and Modeling.

[9] Albrecht, A.J., & Gaffney, G.E. (1983) Software Function, Source lines of Codes, and Development

Effort Prediction, A Software Science Validation, IEEE Trans Software Engineering.

[10] Munialo, S.W., &Muketha, G.M. (2016) A Review of Agile Software Effort Estimation

Method,International Journal of Computer Applications Technology & Research..

[11] Mahmoud, K., Ilahi, M., Ahmed & B., Ahmed, S. (2012) “Empirical Analysis of Function points in

service oriented in Service oriented architecture (SOA) Applications”, : Industrial Engineering letters.

[12] Chidamber, S, R., &Kemerer, C, F. (1998) Managerial Use of Metrics for Object-Oriented Software:

An Exploratory Analysis, IEEE.

[13] McCabe, T, J. (1976) A Complexity Measure,IEEE.

[14] Amsden, J. (2010) Modeling with SoaML, the Service-Oriented Modeling Language. Part 1. Service

Identification, IBM.

[15] COSMIC. (2010) Guideline for Sizing SOA Software, v1.0 : The Common Software Measurement

International Consortium (COSMIC).

[16] COSMIC. (2015) Guideline for Sizing SOA Software, v4.0 : The Common Software Measurement

International Consortium (COSMIC)

[17] Martino, & S.,Gravino, C. (2009) Estimating Web Application using COSMIC-FFP

Method,International Journal of Computer and Applications.

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.2, March 2019

83

[18] Li, Z., & Keung, J. (2010) Software Cost Estimation Framework for Service-Oriented Architecture

Systems Using Divide-and-Conquer Approach,5th IEEE International Symposium on Service

Oriented System Engineering.

[19] Li, Z.,& O’Brien, L. (2010) Towards Effort Estimation for Web Service Compositions Using

Classification Metrics, IEEE

[20] Marsyahariani, N., Daud, N. & Kadir, W.M.N. (2014) Static and Dynamic Classification for SOA

Structural Attributes Metrics,8th Malaysian Software Engineering Conference.

[21] Sharma, V., Shewandayn, B. &Bhukya N. (2017) Measuring Usability of Web services using

Coupling Metrics,International Journal of Advanced Research in Basic Engineering Science and

Technology.

[22] Muketha, G.M., Ghani, &A., Selamat, M. (2010). A Survey of Business Process Complexity Metrics,

Information Technology Journal.

[23] Srinivasan, K. & Devi, T. (2014). Software Metrics Validation Methodologies in Software

Engineering: International Journal of Software Engineering & Applications.

[24] Briand, L.C., Morasca, S., &Basili, C.H. (1991). Property – Based Software Engineering

Measurement, IEEE Transactions on Software Engineering.

AUTHORS

Samson WanjalaMunialo is a an assistant lecturerinMeru University of Science and

Technology, Kenya. He has BED. Degree from Catholic University of Eastern Africa,

Kenya MSc Information Technology Management from University of Sunderland,

UK and currently he is pursuing his PHD Information Technology at MasindeMuliro

University of Science and Technology. His area of research includes software metrics,

software effort estimation and IT project management.

Geoffrey Muchiri Muketha received the BSc degree in Information Science from

Moi University in 1995, the MSc degree in Computer Science from Periyar University
in 2004, and the PhD degree in Software Engineering from Universiti Putra Malaysia

in 2011. He is Associate Professor and Dean of the School of Computing and

Information Technology at Murang’a University of Technology, where he has taught

and supervised both undergraduate and postgraduate students for many years. His

research interests include software and business process metrics, software quality,

verification and validation, empirical methods in software engineering, and

component-based software engineering. He is a member of the International

Association of Engineers (IAENG).

Dr. Kelvin Omienoisa Senior Lecturer in the Department of Information Technology

and Informatics, School of Computing and Information Technology, Kaimosi Friends

University College, Kenya. He holds a PhD in Information Systems of Jaramogi

University of Science and Technology, MSc in Information Technology and BSc in

Computer Science. His research interests are in performance evaluation, System

optimization, security and parallel and distributed system.

	Abstract
	Keywords
	Service-oriented Architecture, Web services, software metrics, Unified Modelling Language, effort estimation.
	3.1 Weighted Operation Count (WOC)
	3.2 Service Dependency Count (SDC)
	3.3 Weighted Message Count
	3.4 Weighted Service Count (WSC)
	4.1 WOC for purchase order SOA system

	5. Theoretical Validation

