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  Abstract 
In this research study, we have modelled the transmission of COVID-19 in Uganda 
using a discrete-time Markov chain. Most of the already used epidemiological or 
infectious disease transmission models consist of partial differential equations that 
do not generalize the determinants of transition at discrete-time intervals when 
estimating the probability transition matrix. However, using the historical data pro-
vided by the Ugandan government through daily press statements, the model has 
revealed the state of transmission within the population. Furthermore, our model 
had shown that it is easier to deal with the disease at a latency stage than when the 
transmission had grown explosively among the healthy Ugandans. In addition, the 
findings of the research study should enable the Ugandan government to take ap-
propriate preventive disease control measures when combating this life-threatening 
global pandemic. 
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1. Introduction 

Since the inception of COVID-19 in December last year, several epidemiological and deterministic mathematical 
models have been proposed to model the disease transmission dynamics to help the world understand the transmission of 
the virus from one state to another during a specified period. In addition, there has been turmoil worldwide, especially 
with the higher number of deaths experienced globally [1]. The COVID-19 is a novel coronavirus transmitted instanta-
neously among humans and was discovered in China in December 2019. The disease has spread now to almost 99 per-
cent of all countries or over 300 countries worldwide. COVID-19 is a severe respiratory virus transmitted through several 
avenues via contact with an infected person. As of November 10th, 2021, over two hundred million people were con-
firmed with the virus; simultaneously, more than five million people succumbed due to the virus globally. 

The transmission of the COVID-19 virus occurs primarily through close contact with a person with the confirmed vi-
rus. This is by tiny droplets produced when the confirmed person coughs, sneezes, or talks. Research by [2] proved that 
the virus is not airborne, meaning that the spread cannot be via the air over long distances. However, many models main-
ly apply to non-stochastic dynamics in nature, which cannot ascertain the virus metrics on the probability of infection or 
recovery on the first patient and the expected time of disease for those COVID-19 persons (either healthy or have the 
virus). 

A person in a healthy state may also contract the COVID-19 virus by touching a contaminated surface while touching 
their face. The virus may survive on surfaces for up to three days or approximately seventy-two hours in most cases. The 
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virus is most contagious in its first three days after symptoms, commonly known as the symptomatic stage. The disease 
can also be transmitted without showing immediate signs through an asymptomatic stage. A person may transmit the dis-
ease to others without showing it at the initial stages, only to show symptoms at latency stages, according to [3]. The 
number of days a person takes before showing the signs of COVID-19 may vary from one individual to another accord-
ing to their levels of immunity, which may start from three to 14 days maximum. 

The most common symptoms that a person can exhibit include high fever, dry cough, and in some cases, shortness of 
breath. The common forms of body complications for a confirmed incident may consist of mild to acute pneumonia, and 
many other respiratory distress syndromes may occur, whether mild or sharp. For now, the primary treatment is sympto-
matic and mechanisms of supportive therapy by [4]. However, putting in place preventive measures like wearing musk, 
frequent handwashing with flowing water, or using hand sanitizers, covering of mouth when one is coughing, among 
other measures, can help reduce the spread of the virus. 

Many countries have put in more efforts to prevent the spread of the COVID-19 virus, which includes restrictions on 
traveling as in Uganda, quarantines for the confirmed cases, curfews for healthy persons. Other measures are workplace 
hazard controls, cancellations of planned events, social facility closures, and event postponements, especially in the 
sporting arena. The pandemic has now led to unblemished disruption of global socioeconomic according to [5] and ([6], 
which has a massive impact on people’s livelihoods. This has led to a shortage supply caused by panic buying at the same 
time in countries. Almost 95 percent of schools have been affected, leaving a potential economic recession in over 205 
countries globally. 

For instance, [7] formulated a mathematical model, which is discrete when investigating the transmission of SARS. 
The findings noted that early and strict quarantine measures were vital for SARS control. [8] and [9] did develop ordinary 
differential equations and stochastic SEIR models when studying the infectious disease dynamics before proposing the 
most effective control measures in terms of interventions [10]. While the models have been used in several Ebola pan-
demic outbreaks in many African countries such as DRC, it is essential to note that new models that use probability are 
more precise in transmission control of the COVID-19 models. Many models have been used in East Africa to model the 
transmission of COVID-19 such stochastic modeling, as well as prediction of the COVID-19 pandemic and economic 
effects, spread in Kenya [11] and [12]. 

This research study uses a discrete-time Markov chain model for estimating the transmission rates of COVID-19 in 
Uganda. One can model the Coronavirus transmission discretely to help policymakers implement the best strategies that 
can work well for control measures, thus preventing unwanted deaths. The deaths have been poor modeling techniques 
from other commonly used epidemiological models of disease transmission in Uganda. The COVID-19 will always affect 
the business activities in many countries in terms of the stock securities market in the world, such as the Nairobi Securi-
ties Exchange market [13] and general economic performance. We have structured this research paper as follows; intro-
duction and literature review in Chapter 1, methodology in Section 2, sources of data used during modeling in Section 3, 
data analysis, and interpretation of results in section four. 

2. Methodology 

2.1 Modeling Preliminary Techniques 

2.1.1 HCDR Conceptual Framework 
In this research study, it is important to consider four discrete states, namely, Healthy (state 0), Corona-ill (state 1), 

Recovered (state 2) and Dead (state 3) denoted with acronym as HCDR. These states can be represented in a concep-
tual/methodological framework as follows: 

 
Figure 1. Conceptual Framework of COVID-19 Transmission. 
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From Figure 1, the states can be defined as discrete-time states. Let (Yi,i = 0,1,2,3) to represent number of persons who 
are at any given state from COVID-19 in Uganda at time, t. This means that the stochastic process, Yt is a stochastic 
process that has states namely 0, 1, 2 and 3. Thus, the 1st-order dependency in terms of time-homogeneous 

Definition 1. Markov chain used to model the process statistically is Yet defined as follows; 
P [Yn+1 = y/Y1 = y1, Y2 = y2, Y3 = y3.......Yn = yn] = P [Yn+1 = y/Yn = yn]                 (1) 

provided that the initial conditions are defined as follows; 
P [Y1 = y1, Y2 = y2..., Yn = yn] > 0                                   (2) 

From equation 1 and 2, the Markov chain will be; 
P [Yn = in/Yn−1 = in−1]                                        (3) 

Thus, the transition probability matrix defined as 

                                (4) 

where we can define, ∑ 𝑃𝑃𝑖𝑖𝑖𝑖 = 1  3
𝑗𝑗=0 provided that states i can take the values, i= 0, 1, 2, 3. 

2.1.2 Definitions of COVID-19 States of Nature 
From the (HCDR) Conceptual Framework of COVID-19 Transmission in Figure 1, we will define the states as fol-

lows; 
• Healthy State (H): This comprises of those persons who have not been exposed to COVID-19. 
• Corona State (C): This comprises of persons who have been confirmed with COVID-19 virus in Uganda. 
• Dead State (D): This comprises of persons who have died from the COVID-19 in Uganda. 
• Recovered (R): It comprises of those who have recovered from the Corona virus. 

The probability transition matrix, Pi,j denotes the probability of moving from state i to state j within a single time pe-
riod. For instance, p00 is defined as the probability that a healthy person (state 0) will still be healthy (state 0) from time 0 
to time 1 and p23 is the probability that a person who was in state 2 will be in state 3 after a given time period, t = 1. 

Based on the assumptions of the above model, the next state of a person only depends on the previous state as from 
equation (3). When a person stays in a state where he or she cannot be removed by the existing modes of decrements 
such as healthy or dead state, this is called an absorbing state. The transition probabilities in the transition probability 
matrix remain constant during the period of transmission. 

2.2 Probability Transition Matrix Model  
In this model formulation, we will use the maximum likelihood estimation to estimate of the probability transition ma-

trix for the four states of the COVID-19 transmission. The four states are as in Table 1. 

Table 1. COVID-19 Transmission States in Uganda 

Groups Healthy Corona Recovery Dead 
Healthy Y00 Y01 Y02 Y03 
Corona Y10 Y11 Y12 Y13 

Recovery Y20 Y21 Y22 Y23 
Dead Y30 Y31 Y32 Y33 

From Table 1: Y00: number of Healthy persons exposed to COVID-19 in Uganda but still remains healthy by the time 
study ends; Y01: number of persons who contracted the COVID-19 virus by the time study ended; Y02: number of persons 
who contracted the virus but recovered at the end of the study; Y03: the number of people who died at the end of study 
period. In addition, Y10: number of persons who recovered from COVID-19 at the end of the period of study; Y11: number 
of infected persons who remained infected by the time the study ends; Y12: number of persons who recovered from the 
virus by the time study ends; Y13: the persons who died by the time study ended. Y20: the people who recovered from the 
virus and become healthy again, Y21: those who contracted the virus after recovery; Y22: those who contracted the virus 
but remained with the virus by the time study ended and Y23: the number of people who died from COVID-19 after re-
covery from the virus. In the end, Y30: number of people who died from exposed but not related to COVID-19; Y31: 
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people who died from the virus after contracting the virus: Y33: number of people who died after recovery from the virus; 
Y33: number of people who died from the virus. 

The number of dead people in Y30, Y31, Y32 would be zero because death is an absorbing state. In addition, the probabil-
ity of staying in the state until the end of the study is one such as Y33= 1. The vector matrix for the (Y30, Y31, Y32, Y33) 
would be (0, 0, 0, 1). 

Definition 2. The property of independence of the Markov chains is assumed in this study, the stated likelihood of the 
probability transitions, Pi,j, is modeled as a binomial model as follows; 

                        (5) 

where the θi,j is the observed number of transitions that starts from states i to j during the period of study and the proba-
bilities are constant during the entire period of study assumption is made. The Pi,j is estimated from the multi-binomial 
estimation method from equation (5) as; 

                                       (6) 

for the values of i, j = 0,1,2,3, the standard errors have been estimated from the data given by the Ugandan government 
on the Covid-19 pandemic as a stated sampling distribution is; 

                                (7) 

2.3 Estimating Covid-19 Metrics  
In estimating metrics of the pandemic, we assume that probability that a healthy person will be confirmed with Co-

vid-19 for the first time between time t −1 and t steps for the states of nature, i, j = 0,1 as from the probability transition 
matrix described above is; 

 

                                     (8) 

From the same argument in equation (8), the number of Covid-19 confirmed persons who recover between time t −1 
and t steps will be; 

g  

g p10                                      (9) 
Ultimately, the expected number of pandemic confirmed cases and recoveries will be having a close form solution that 

can be computed as; 

                                  (10) 

For values of 𝑖𝑖, 𝑗𝑗 = 0,1 and i is not equal to j, where ∑ 𝑡𝑡 ∗ 𝑔𝑔𝑡𝑡𝑖𝑖,𝑗𝑗
∞
𝑡𝑡=1  is defined as mean passage time from one state i to 

another state j while P(i→j) is defined as 𝐸𝐸�𝜃𝜃1
𝑖𝑖,𝑗𝑗 � = 1

1−𝑝𝑝𝑖𝑖 ,𝑗𝑗
∗ �−𝑝𝑝𝑖𝑖,𝑗𝑗 � =

𝑝𝑝𝑖𝑖 ,𝑗𝑗
1−𝑝𝑝𝑖𝑖,𝑗𝑗

. This is defined as the ultimate probability 

of moving from one state i to state j. The number of days a person confirmed with corona virus lives from the state to 
another state 𝐻𝐻𝑖𝑖  where 𝑖𝑖 = 0,1 is estimated using the equation. 

𝐻𝐻 = (𝐼𝐼 − 𝑃𝑃)−1 �1
1�                                     (11) 

Where I is a 2 by 2 matrix denoted as 𝑃𝑃 = �
𝑝𝑝00 𝑝𝑝01
𝑝𝑝10 𝑝𝑝11

� 

2.4 Steady State Analysis  
At the equilibrium state, the method of estimating the steady state analysis of the transition probabilities was proposed 

by [16]. The Pi
x
,j,i, j = 0,1,2,3, which are the COVID-19 states are called the probability transition matrix and is computed 

using a decomposition method that requires the eigenvalues and their equivalent eigenvectors. Thus, it can be estimated 
as 
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                                  (12) 
where W is a 4 by 4 matrix with values Y0, Y1, Y2, Y3 and Yj, for j = 0,1,2,3 are the right Eigen-vectors that are equivalent 
to the eigen-values πj, for j = 0,1,2,3. Therefore, 

PYj = πjYj                                         (13) 

                                 (14) 

3. Source of Covid-19 Data  
The Ugandan government provided all data used in this study through the Ministry of Health website database. The 

data is from 13th May 2020 until 6th September 2021, when this study was ready for submission. The data used in this 
research is available at the Ministry of Health of Uganda and the World Health Organization Websites, respectively. One 
has to register online before can be able to get access the data. 

The analysis was done using statistical programming languages called R and Excel Spread Sheet. The results are dis-
cussed in the next section 4 as well as the graphical representations. 

From the data from the Ministry of Health in Uganda, the data are given as follows; Healthy/healthy=200,986, 
ill/ill=10,652, recovered/ill=3,570, healthy/dead=92, ill/healthy=10,840, ill/ill=1,001, ill/recovered=998, ill/dead=41, 
recovered/healthy=2,418, recovered/ill=802, recovered/re recovered/dead=22 and all deaths were 471. The above infor-
mation shows the number of persons per state by the end of the study as at 7th September 2021. 

4. Data Analysis 
4.1 The Conceptual Framework Model 

We have assumed that the discrete-time states of the applied Markov chain model for COVID-19 pandemic as healthy 
at (state 0), confirmed with the virus at (state 1), recovered from the virus at (state 2) and dead at (state 3) states. Also, 
Let Yi, for i = 0,1,2,3 to denote the number of persons who are at any given state from COVID-19 at time, t. The dis-
crete-time Markov chain model will have a state space, S{i} for i = {0,1,2,3}. 

4.2 Estimation of the Transition Probabilities for COVID-19 Pandemic 
The maximum likelihood method was used during estimation of the transition probability matrix for the COVID-19 

pandemic. Table 2 shows the expected estimates as well as levels of confidence intervals for the Corona virus transition 
probabilities respectively. 

Table 2. Maximum Likelihood Estimates of COVID-19 transition probabilities 

Estimated Parameters Pˆi,j sˆe(Pˆi,j) 95% confidence intervals 
p00 0.850 0.00283 0.84505−0.85305 
p01 0.090 0.00263 0.08950−0.09060 
p02 0.000 0.0000 0.0000−0.0000 
p03 0.001 0.00973 0.00099−0.00102 
p10 0.810 0.00972 0.80940−0.81020 
p11 0.100 0.00785 0.09915−0.10250 
p12 0.080 0.00753 0.07945−0.00825 
p13 0.010 0.00186 0.00985−0.01020 
p20 0.810 0.00789 0.80850−0.810350 
p21 0.100 0.00872 0.09955−0.10180 
p22 0.080 0.00723 0.07985−0.00835 
p23 0.010 0.00541 0.00995−0.01021 
p30 0.000 0.00000 0.00000−0.00000 
p31 0.000 0.00000 0.00000−0.00000 
p32 0.000 0.00000 0.00000−0.00000 
p33 1.000 1.00000 1.00000−1.00000 
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The transition probability matrix is then determined as; 

                     (15) 

A graphical algorithm can sometimes be used when representing the transition probabilities matrix for COVID-19, 
thus enabling an easy classification of the states into transient, recurrent, or an absorbing state. Equation 15 shows how 
the COVID-19 has been classified into different states. In addition, state {0}, state {1} and state {2} are both transient 
and recurrent states while state {3} is known as an absorbing state. 

For example, state {0, 1} is said to be transient since the two states can communicate with one another at the same 
time; it has a negative probability ever of going back to the given class. State {3} is called an absorbing state for the 
COVID-19 virus since once a person is dead, he or she stays dead with a probability of one (which is a certainty proba-
bility). The model of discrete-time Markov chain cannot be regarded as ergodic even if it is aperiodic. It is because of its 
irreducible property for all the available states that don’t belong to a similar equivalence class. 

4.3 Estimation of COVID-19 Metrics 

4.3.1 The 1st Transition Probability of COVID-19 Pandemic 
The probability of a healthy person being confirmed with the COVID-19 case in Uganda was determined by equation 

(8). Moreover, the probability that a Coronavirus confirmed person will become healthy or recovers has been estimated 
using equation (9). Figure 2 shows the distribution of the transition probabilities of the virus across several discrete-time 
steps from point one to a hundred. The figure also shows how the disease slowed down on the confirmed statistics of the 
infected persons. This phenomenon may be due to the high level of education that the Ugandan government has taken 
into consideration by ensuring that the population gets more information on how to combat the spread of the COVID-19 
virus. 

In addition, when a person is confirmed with the virus at an early, initial, or latent stage, the government needs to im-
prove higher rates of recovery while reducing the chances of infecting the healthy population. The results also show a 
small probability of recovering from the virus disease after it has been moved to several future discrete time steps. 

 
Figure 2. Probability of First COVID-19 Confirmation and Recovery. 

4.3.2 The Probability of COVID-19 Pandemic Transmissions 
At any time, the probability of COVID-19 transmission at any time, t, was determined using the cumulative totals of 

the probabilities of 1st confirmed cases of healthy persons. Figure 3 shows a graph of the cumulative transition probabili-
ties from the matrix over discrete-time intervals. From the diagram, it is easy to note that the virus has become more 
pandemic over time as the study progresses within the healthy population. This phenomenon is similar to what happened 
in the USA after the healthy population ignored the government and WHO measures [7] to stay home and avoid spread-
ing the virus. The disease transmission has become more exponential, thus prompting desperate curative measures such 
as country lock-down to prevent further spread. 
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Figure 3. Cumulative Probability of COVID-19 over the days for Confirmed Persons. 

4.4 COVID-19 Pandemic Expected Confirmation & Recovery Time 

The expected time for confirmation and recovery was determined using equation (10) for the coronavirus. The ex-
pected time for proof of a healthy person was 10.25 days in a given cohort of persons considered in the study. The aver-
age time for a healthy person to be exposed to the virus was between 2 and 4 days. Time to recovery is a summation giv-
en that the virus takes 5 to 14 days before it becomes symptomatic; otherwise, it is just asymptomatic in the other states. 

While using this discrete-time Markov chain model, the number of deaths of persons who have been confirmed with 
the virus remains at a rate of 8 percent, which is far above the WHO’s mortality rate of 2 to 3 percent. This spike in cases 
is from the recklessness of Ugandans to the virus’s exposure, especially when they do not follow the COVID-19 con-
tainment guidelines. 

Table 3. Estimates of COVID-19 Metrics in Uganda 

Metrics COVID-19 Pandemic 

General likelihood of confirmation/Infection 0.85 

General likelihood of Recovery 0.92 

Expected time to Confirmation (in days) 12 days 

Expected time to Recovery (in days) 32 days 

Probability of Reinfection 0.50 
From Table 3, it is essential to note that the general likelihood of a person living in Uganda contracting the COVID-19 

virus is 85% at the same time, the recovery rate is 92 percent. It means that the death rate is 8%, which is still high com-
pared to the most affected countries globally, such as the USA, with 7.5% of all the people who have contracted the virus. 
The expected number of days until the confirmation of the virus is 12 days, which is slightly below the maximum number 
of days for all symptoms to show up in 14 days. This phenomenon may be attributed to the tropical conditions that are 
being experienced in Uganda. 

The recovery period is 32 days, which includes the 14 days for Quarantine. It is defined as the amount of time it takes 
for a healthy person who has just contracted the COVID-19 virus to recover. However, there is the risk of reinfection 
when the person exposes himself or herself to the virus again. The probability of reinfection from the COVID-19 in 
Uganda stands at 50%. It means that half of those healthy persons who have recovered from the virus did not develop a 
more robust immune system to withstand another virus’s case if they get into contact again. 

The Ugandan government needs to ensure that the Coronavirus survivors do not get reinfected following the exposure 
again from the contaminated area to prevent the spread among millions of healthy persons within the period. 

4.5 Estimation of the Equilibrium State Transition Probability Matrix 

The Px as x−→∞, from definition of [15] which is the transition probability matrix had been estimated from equation 
(12) that showed that the discrete-time Markov chain is not irreducible but aperiodic since the removed state (3), death is 



Raphael Naryongo, Joab Onyango, Loyford Njagi, Margaret Nakirya 
 

 
DOI: 10.26855/jamc.2022.03.002 11 Journal of Applied Mathematics and Computation 
 

an absorbing state. This can help in predicting the transition probability matrix for transition probabilities for the Co-
vid-19 at any given time, t−step. This means that the Covid-19 probability transition matrix at equilibrium state will be; 

       (16) 

Clearly when the value of x = 1, then we have equation (16), from the determined PCovid
1 

−19 transition matrix that gives 
the actual first transition matrix for the corona virus. Henceforth, whenever the value of x ≥ 2, then transition matrix can 
be easily generated from the modeled PCovid

x 
−19 matrix even as x becomes larger. However, it is important to assume that 

the transition probabilities are constant over the duration of the period of study. 
From equation (16), a researcher or reader of the paper can obtain the probabilities of the different states of a healthy 

person who have the pandemic virus from time, x = 2,3, 4,. until where x is a large number (as x −→∞) commonly known 
as in the long run probabilities of the transition matrix operations. 

5. Conclusion 
From the above scientific research, the discrete-time Markov chain model has revealed that COVID-19 has a favorable 

transmission rate initially. It becomes more severe in the higher confirmed cases when the healthy persons interact with 
the confirmed victims. The confirmed cases can grow exponentially to reach a similar situation to that in the USA or even 
death rates comparable to those in the USA. Therefore, the Uganda government needs to ensure and emphasize the ap-
propriate use of the preventive measures available before focusing on curative measures, especially for the healthy popu-
lation. 

The study findings should help the Ugandan government take necessary precautions on how to deal with COVID-19. 
There are chances of having a second wave of the pandemic, which is likely to be experienced in the country just like 
other countries in Europe and Asia. As a recommendation, the discrete-time Markov chain model is thus an excellent 
epidemiological modeling technique for estimating transmission trends of infectious diseases such as the COVID-19 
pandemic. 
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