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ABSTRACT: Aerosol optical depth (AOD) has become one of the most crucial parameters for climate change assessment.
This study presents long-term (2002–2016) spatio-temporal distributions and trends in AOD over East Africa (EA) retrieved
from the moderate-resolution imaging spectroradiometer (MODIS) Aqua [Dark Target (DT) and Deep Blue (DB)] and
multi-angle imaging spectroradiometer (MISR). An inter-comparison of AODs retrieved from different algorithms noticed
significant positive correlations (r = 0.72− 0.87) with MISR underestimating MODIS. Moderate (>0.5–0.8) to high (≥0.8)
correlations in AOD exhibited over EA, with a few regions representing low (0–0.5) positive correlations. The spatial patterns
of annual mean AOD were generally characterized by low (<0.2), moderate (0.2–0.35) and high (>0.35) centres over EA.
The seasonal mean AODs over EA were found high (low) during the local dry (wet) seasons, with annual mean (±𝜎) values
of 0.20± 0.01, 0.18± 0.01 and 0.20± 0.02 as observed by DT, DB and MISR, respectively. A single peak distribution of
frequencies in AOD was observed by the three sensors in the interval 0.1–0.2, signifying a generally less polluted environment
dominated by particular aerosol type. Linear trend analysis revealed an increase in AOD by 0.52, 0.57 and 0.74% year−1

as detected by MISR, DT and DB, respectively, and were consistent with those noted in key meteorological parameters.
Furthermore, annual and seasonal spatial trends and tendencies revealed a general increase in AOD over EA, being positive
and significant over the northern part of EA. Later, classification of major aerosol types over major cities in EA revealed
dominance of continental (74.47%) followed by the mixed (16.22%) and biomass-burning/urban-industrial (8.02%) aerosols,
with minor contributions from desert dust (1.03%) and clean maritime (0.32%) type of aerosols.
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1. Introduction

Atmospheric aerosols are amongst the major climate
forcing agents recognized globally (Charlson et al., 1992;
IPCC, 2013). Aerosols influence climate directly by
scattering and absorbing solar and terrestrial radiations
and indirectly by modifying cloud formation properties
(Twomey, 1977; Albrecht, 1989; Haywood and Boucher,
2000; Zhang and Reid, 2010). Absorption of solar radi-
ation by aerosols leads to warming of the troposphere
and cooling of the surface, which can alter atmospheric
stability, thereby influencing cloud microphysics and their
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lifetime (Twomey, 1977; Albrecht, 1989; Guleria et al.,
2014). On the other hand, backscattering of solar radiation
enhances planetary albedo, exerting negative climate
forcing (Charlson et al., 1992; Rosenfeld, 2000). Aerosols
cause negative climate forcing by indirectly modifying
cloud albedo and droplet size distribution, changing the
radiative properties and lifetime of clouds (Ramanathan
et al., 2001). They also cause positive feedback by
absorbing reflected radiation from the Earth’s surface and
preventing them from escaping to space. Consequently,
they indirectly influence the land surface process, global
surface temperature, climate and hydrological cycle and
ecosystems (Ramanathan et al., 2001; Huang et al., 2006;
Lau et al., 2006; Ramanathan and Feng, 2009).

Despite the progress made in understanding and quanti-
fying the climatic effects of aerosols, many uncertainties
still exist as compared to those of greenhouse gases
(IPCC, 2013). Part of these uncertainties arises because
of incomplete knowledge of aerosol’s spatio-temporal
distributions, trends and their associated properties (Alam
et al., 2011; Mehta, 2015). It is, therefore, important that
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we continue to improve characterization of aerosols over
different regions of the globe, particularly specific ones
such as East Africa (EA) (Boiyo et al., 2017a, 2017b)
which experiences inadequate description of atmospheric
aerosols. A number of ways, ranging from field mea-
surements (Moorthy et al., 2005; Robles-Gonzalez and
de Leeuw, 2008) to ground (Holben et al., 1998) and
satellite-based remote sensing (Remer et al., 2005; Torres
et al., 2007), have often been used for the past decades to
provide continuous data sets of various aerosol parameters.

Although field measurements provide an accurate and
detailed description of aerosols, they are usually lim-
ited in space. Furthermore, they require extensive man-
power for constant monitoring and maintenance (Ben-
nouna et al., 2011; Kumar et al., 2013, 2017) which even-
tually results in data gaps. A number of ground-based
remote sensing networks such as Aerosol Robotic Network
(AERONET) (Holben et al., 1998), European Aerosol
Research Lidar Network (EARLINET) (Amiridis et al.,
2005), Micro-Pulse Lidar Network (MPLNET) (Welton
and Campbell, 2002) and China Aerosol Remote Sensing
Network (CARSNET) (Che et al., 2009) procure contin-
uous measurements of aerosol properties in various parts
of the globe with very high temporal resolution. However,
they require expensive and sophisticated instruments and
covers relatively small spatial areas. Recent efforts have
also focused on numerical modelling and prediction which
is intended to resolve various atmospheric processes such
as sources, transformation processes, transport and sinks of
aerosols and their precursors. This process is usually asso-
ciated with large degree of uncertainties related to aerosols
processes. Furthermore, they require statistically sophisti-
cated approaches combining observations and models so
as to reduce uncertainties related to the model initial con-
ditions (Liu et al., 2011).

In regard to above constraints, much attention has been
devoted towards monitoring of atmospheric aerosols
using a number of space-borne sensors such as advanced
very high-resolution radiometer (AVHRR), total ozone
mapping spectrometer (TOMS), multi-angle imaging
spectroradiometer (MISR), ozone monitoring instrument
(OMI) and moderate-resolution imaging spectroradiome-
ter (MODIS) (Ignatov et al., 2004; Torres et al., 2007).
Remote sensing of atmospheric aerosols from space-borne
sensors provides unprecedented opportunity to achieve
long-term continuous global characterization of aerosols
(Kumar et al., 2014a, 2015; Adesina et al., 2016; Boiyo
et al., 2017a). However, retrievals from these sensors usu-
ally suffer from uncertainties associated with instrument
calibration, data coverage, retrieval algorithms, cloud
screening and surface properties resulting in different
aerosol optical depth (AOD) values for a given space and
time (Bennouna et al., 2011; Mehta et al., 2016). In con-
sequence, their reliability in representing spatio-temporal
variability and trends in AOD alongside associated proper-
ties is an important aspect that needs urgent intervention,
especially over the less explored regions such as EA.

One step of ensuring the reliability of satellite-derived
AOD products is by carrying out comparative

climatologies from more than one sensor. Retrievals
from multiple sensors are considered reliable if all the
sensors retrieve aerosol parameters with more or less
the same strength (Alpert et al., 2012). Several studies
focusing on comparative climatologies have been reported
in different parts of the globe. Studies by Guleria et al.
(2012a, 2012b) and Gautam et al. (2013) showed the
capability of satellites in characterizing AOD distribution
over locations having a typical topography. Mehta (2015)
reported comparable spatial variations in AODs retrieved
by the MODIS and MISR sensors. A significant positive
correlation in AODs retrieved by the MODIS and MISR
was reported by Kumar et al. (2015) over Durban, South
Africa (SA), while Adesina et al. (2016) reported declin-
ing AOD trends retrieved from the sensors over different
regions of SA. Also, Mehta et al. (2016) reported a good
agreement in AOD variations and trends retrieved from
MODIS and MISR sensors. Furthermore, Kang et al.
(2016) investigated the spatial-temporal evolution and
trends in aerosol optical properties over Yangtze River
Delta (China) using MODIS and MISR data. The AODs
retrieved from MISR sensor were consistently lower than
those derived from MODIS. Recently, a consistent spatial
variation in aerosol optical properties and identification
of aerosol types from different clustering techniques were
reported by Kumar et al. (2018) over an urban-industrially
polluted city, Nanjing in east China.

EA is one of the regions around the globe that deserves
better and extensive characterization of aerosols in terms of
spatio-temporal distribution, trends and associated proper-
ties. It is currently experiencing an unprecedented increase
in aerosol concentration due to growing population, rapid
urbanization and industrialization, climate change and lack
of strict environmental policies geared towards minimiz-
ing emissions (Van Vliet and Kinney, 2007; Ngo et al.,
2015; Egondi et al., 2016). The proximity of region to the
Indian Ocean, Sahara Desert and central Africa’s Demo-
cratic Republic of Congo (DRC) makes it vulnerable to
almost all types of aerosols (Makokha and Angeyo, 2013;
Boiyo et al., 2017a). Despite this, it continues to lag behind
the rest of the world in studies related to atmospheric
aerosols, with far-reaching consequences on its inability
to quantify precisely the climatic impacts of atmospheric
aerosols. Previous studies over the region (Makokha and
Angeyo, 2013; Ngaina and Muthama, 2014) were limited
either in terms of area coverage, data span period or anal-
ysis techniques and therefore unable to establish compara-
tive AOD climatology. Recent studies (Boiyo et al., 2017a)
focused on analysing the spatio-temporal characteristics of
aerosol optical properties derived from the MODIS and
OMI sensors. In their latest work (Boiyo et al., 2017b),
they validated AODs retrieved from MODIS-Terra (DT
and DB), MISR and OMI sensors against the ground-based
AERONET measurements over selected stations in Kenya,
EA. However, the consistencies of the satellite-derived
AOD in representing the spatial and temporal variabilities
and trends in AOD alongside associated properties over the
same region were not examined.
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As a continuation of our previous works over EA,
the present study seeks to compare the spatio-temporal
variability and trends in AOD patterns retrieved from
two space-borne sensors: MODIS Aqua (DT and DB)
and MISR during 2002–2016, with intent of identify-
ing the similarities and differences between the data
sets in characterizing AOD climatology. To achieve this,
an inter-comparison and correlation of AOD data sets
retrieved from the sensors are first analysed in order to
understand their sensing capabilities. The study then syn-
thesizes and compares the spatio-temporal distributions
of AOD retrieved from the three sensors. This is fol-
lowed by a comprehensive analysis of trends and relative
changes (tendencies) in AOD, and their potential associa-
tion with trends in key meteorological factors. In addition,
the annual frequency distribution curves of AODs retrieved
from the sensors are constructed, followed by an investiga-
tion of the dominant aerosol types over three major cities
representative of EA. The rest of this article is structured
as follows: Section 2 illustrates the study area, data and
methodology, while Section 3 details results and discus-
sion. Conclusions and recommendations drawn from the
present study are elucidated in Section 4.

2. Materials and methods

2.1. Study region and meteorology

The study domain covers three countries in EA (Kenya,
Uganda and Tanzania) enclosed within latitudes
12∘S–5∘N and longitudes 28∘–42∘E. It is bordered
by Ethiopia and Sudan to the north, Somalia and the
Indian Ocean to the east, Rwanda, Burundi and DRC
to the west and Mozambique and Zambia to the south
(Boiyo et al., 2017a). The region experiences tropical
climate with climatic variations influenced by several
factors such as Inter-Tropical Convergence Zone (ITCZ),
El Nino-Southern Oscillation (ENSO) and Indian Ocean
Dipole (IOD) (Ongoma and Chen, 2017). Based on
the prevailing meteorological conditions, a year has
been divided into four seasons: March–May (MAM),
June–August (JJA), September–November (SON) and
December–February (DJF) for further analysis in this
study. Higher amounts of precipitation are generally
observed from March to May (MAM, ‘long rains’) and
September to November (SON, ‘short rains’) resulting in
large wet deposition (rainout) of aerosols (Figure 1(a)).
In contrast, the local dry seasons (June–August; JJA and
December–February; DJF) are characterized by high
aerosol loadings associated with reduced precipitation
(Figure 1(a)) (Makokha and Angeyo, 2013; Ngaina and
Muthama, 2014).

Apart from the aerosol data, this study investigated pre-
vailing climatic condition and trends in temperature (∘C),
wind speed (m s−1), relative humidity (%) and total pre-
cipitation (mm). The monthly averaged temperature, wind
speed and relative humidity at 850 hPa and spatial res-
olution of 0.75× 0.75∘ were sourced from the European
Centre for Medium-Range Weather Forecasts (ECMWF),

previously used by a number of authors over EA (Yang
et al., 2015; Ogwang et al., 2016). However, the Climate
Research Unit (CRU) temperature (Harris et al., 2014) and
Tropical Rainfall Measuring Mission (TRMM) (Huffman
et al., 2007) precipitation data sets derived at spatial res-
olutions of 0.5× 0.5∘ and 0.25× 0.25∘, respectively, were
preferred due to their better performance over the region
(Kerandi et al., 2017; Makokha et al., 2017).

Temperatures over EA were found to be moderate in
the range 14–30 ∘C (Figure 1(b)), with the lowest (high-
est) values generally observed during JJA (DJF). Relative
humidity (in the range of 40–85%) showed significant
seasonal heterogeneity being high during MAM and low
during DJF (Figure 1(c)). The study region is drier during
JJA followed by SON, being more intense in the south-
west part of Tanzania during these seasons. The synoptic
winds patterns are predominantly easterlies with signifi-
cant seasonality in direction and magnitude (Figure 1(d)).
The DJF is dominated by north easterlies carrying signifi-
cant amount of dust from the Arabian and Saharan Deserts
at certain times of the year (Boiyo et al., 2017a). MAM and
JJA are dominated by south easterlies which enhances pro-
duction and transportation of marine aerosols and smoke
particles from the southwest Indian Ocean and Madagas-
car Island, respectively. It has also been established that
during JJA, winds at 850 hPa are characterized by westerly
flow between 25∘–30∘E and 5∘–10∘N associated with air
masses transported from the DRC (Ogwang et al., 2016).
These air masses could transport significant amount of
smoke particles to the study domain (Boiyo et al., 2017a).

2.2. Instrumentation and data

2.2.1. The MODIS sensor

The MODIS sensor was launched into the Earth’s orbit
with daytime equator crossing at 1030 LST (UTC + 3)
by the National Aeronautics and Space Administration
(NASA) Goddard Space Flight Center (GSFC) on 18
December 1999 onboard the Terra satellite. The second
was launched on 4 May 2002 onboard the Aqua platform
(Remer et al., 2005) and has daytime equator crossing at
1330 LST. The sensor has a swath of ∼2330 km, with a
temporal resolution of 1–2 days and acquires data over
36 spectral bands ranging in wavelengths from 0.415 to
14.235 μm at three spatial resolutions (2 bands at 250 m,
5 bands at 500 m and 29 bands at 1 km) (Mito et al.,
2012; Hu et al., 2017). Seven of these bands operating
in near-ultraviolet (UV), visible and near-infrared spec-
troscopy (IR) wavelength regions (0.415–2.155𝜇m) can
effectively retrieve AOD over land and ocean (Hsu et al.,
2013; Sayer et al., 2013, 2014) using two different algo-
rithms: ‘Dark Target (DT)’ and ‘Deep Blue (DB)’. The two
algorithms are based on Look Up Table (LUT) approach
that employs pre-defined set of aerosol types, loadings and
geometries (Floutsi et al., 2016).

The difference between DT and DB arise in the man-
ner, in which they account for the removal of the sur-
face reflectance signal to accurately determine the aerosol
signal (Mehta et al., 2016). DT employs a set of ratios

© 2018 Royal Meteorological Society Int. J. Climatol. (2018)



R. BOIYO et al.

MAM

4°N

4°S

8°S

12°S
28°E 32°E 36°E 40°E

EQ

4°N

4°S

8°S

12°S
28°E 32°E 36°E 40°E

EQ

4°N

4°S

8°S

12°S
28°E 32°E 36°E 40°E

EQ

4°N

4°S

8°S

12°S
28°E 32°E 36°E 40°E

EQ

4°N

4°S

8°S

12°S

28°E 32°E 36°E 40°E

EQ

4°N

4°S

8°S

12°S
28°E 32°E 36°E 40°E

EQ

4°N

4°S

8°S

12°S
28°E 32°E 36°E 40°E

EQ

4°N

4°S

8°S

12°S
28°E 32°E 36°E 40°E

EQ

4°N

4°S

8°S

12°S

28°E 32°E 36°E 40°E

EQ

4°N

4°S

8°S

12°S

28°E 32°E 36°E 40°E

EQ

4°N

4°S

8°S

12°S

28°E 32°E 36°E 40°E

EQ

4°N

4°S

8°S

12°S

28°E 32°E 36°E 40°E

EQ

4°N

4°S

8°S

12°S
28°E 32°E 36°E 40°E

EQ

4°N

4°S

8°S

12°S
28°E 32°E 36°E 40°E

EQ

4°N

4°S

8°S

12°S
28°E 32°E 36°E 40°E

EQ

4°N

4°S

8°S

12°S
28°E 32°E 36°E 40°E

EQ

JJA SON DJF

3200

3000

2600

2200

1800

1600

1200

800

600

30

28

26

24

20

18

16

14

85

80

75

70

65

60

55

50

45

40

10

9

8

7

6

5

4

3

2

(a)

(b)

(c)

(d)

Figure 1. The seasonal variations of (a) accumulated precipitation (in mm), (b) temperature (in ∘C), (c) relative humidity (in %) and (d) wind speed
(in m s−1 indicated by colour shades) and wind direction (in degrees shown by arrows) derived from the ECMWF during 2002–2016 over the study

domain. [Colour figure can be viewed at wileyonlinelibrary.com].

and relationships between 0.47, 0.67 and 2.1 𝜇m chan-
nels to account for the surface signal and works best
over dense, dark vegetated targets as compared to bright
land surfaces. DB uses maps and libraries of surface
reflectance in the blue channels to account for the sur-
face signal as well as spectral reflectance ratios. It was

originally developed to fill gaps in DT by providing cov-
erage over brighter land surfaces such as desert areas; but
later improved to retrieve aerosols over most vegetated tar-
gets and all cloud-free, snow-free land surfaces resulting in
‘enhanced Deep Blue’ algorithm (Hsu et al., 2004, 2006,
2013).
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Figure 2. Inter-comparison of AODs retrieved from (a) MODIS Aqua-DB versus MODIS Aqua-DT, (b) MISR versus MODIS Aqua-DT, (c) MISR
versus MODIS Aqua-DB and (d) MISR versus MODIS Aqua-combined over EA during 2002–2016. The red and black solid lines in all panels
represent 1:1 and linear regression fittings, respectively. The corresponding regression coefficients obtained from the fitting are also shown in all

panels, with ‘r’ being the correlation coefficient. [Colour figure can be viewed at wileyonlinelibrary.com].

MODIS aerosol products are stored at different lev-
els and under various versions called ‘Collections’. The
MODIS data processing levels include Level 1.0 (geolo-
cated radiance and brightness temperature), Level 2.0
(retrieved geophysical data products) and Level 3.0 (grid-
ded points). The MODIS aerosols retrieval is calculated
on a 10 × 10 km resolution (Level 2), which is retrieved
from higher-resolution radiance measurements (Level 1B).
Clouds are screened within the Level 2 box (Levy et al.,
2007) and the aerosol retrievals are performed if there
is sufficient number (approximately 10%) of non-cloudy
pixels. Hence, Level 2 products may be valid even when
the box has cloud coverage of ∼90%. Depending on the
quality of the retrieval (and the number of valid pixels),
the 10-km retrieval is assigned a quality assurance (QA)
value. The 10-km retrievals are aggregated to the 1∘ box
(Level 3). MODIS retrieval accuracy over land and Ocean
(Tanré et al., 1997; Remer et al., 2005) were estimated to
be ±0.05± 0.20 (AOD) and ±0.03± 0.15 (AOD), respec-
tively, for Level 2 products. This work utilized Collection 6
(C006) Level 3 daily and monthly AOD550 retrieved from
the MODIS Aqua (DT and DB) at a spatial resolution of
1× 1∘ for a period of 14 years (June 2002–May 2016).
In addition, daily averaged Ångström exponent in the
spectral range 470–660 nm (AE470–660) derived from the
MODIS Aqua-DT were used to investigate the dominant
aerosol types over three major cities (Nairobi, Kampala

and Dodoma) representative of EA. The MODIS Aqua
aerosol data products were preferred in this study due to
greater availability of valid pixels over EA and relatively
high (1–2 days) temporal resolution (Levy et al., 2010).
These data products were sourced from the NASA LAADS
(http://ladsweb.nascom.nasa.gov/). Detailed information
about the sensor, data products, retrieval algorithms, cal-
ibration and uncertainties can be found elsewhere (Hsu
et al., 2004, 2006, 2013; Levy et al., 2007; Sayer et al.,
2013, 2014, 2015).

2.2.2. The MISR sensor

The MISR is a passive radiometer also launched onboard
the Terra platform in 1999 by NASA. It observes reflected
and scattered sunlight in four spectral bands (centred at
446, 558, 672 and 866 nm) in nine different directions (four
forwards, four backwards and nadir) both over land (desert
included) and ocean (Diner et al., 2001; Kahn et al., 2010).
This unique design enables it to retrieve AOD over high
reflecting surfaces such as arid and semi-arid areas in the
north of EA. The global coverage time is every 9 days
with repeat coverage between 2 and 9 days depending on
the latitude. The AOD retrieval algorithm is also based on
LUT approach, but the algorithm is dependent on surface
types such as densely vegetated areas, dark water bodies
or high contrast terrain (Diner et al., 2001). Validation
results with the AERONET (Diner et al., 2001; Kahn
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et al., 2010) have shown the retrieval accuracy of ±0.05
or ±0.20 (AOD), whichever is higher. This work utilized
the MISR Terra Level 3 monthly averaged AOD555 at a
spatial resolution of 0.5 × 0.5∘ obtained from Giovanni
online analysis and visualization system (GIOVANNI)
(http://giovanni.gsfc.nasa.gov/giovanni/) during the same
duration as MODIS Aqua AOD. The MISR data were used
for the inter-comparison with reliability achieved when
two or more algorithms show more or less similar results
(Alpert et al., 2012; Adesina et al., 2016).

2.3. Methodology

An inter-comparison of satellite-derived AOD from dif-
ferent algorithms is required in order to understand the
sensing capabilities of the instruments, achieve long-term
AOD database for climatological studies, as well as
improve the accuracy and coverage achievable with a sin-
gle sensor (Alam et al., 2011; Kumar et al., 2015). For this
purpose, MODIS Aqua AOD was first interpolated log-
arithmically to MISR-derived AOD using the Ångström
power law (Ångström, 1961), previously used by a number
of authors (Tripathi et al., 2005; Prasad and Singh, 2007;
Kumar et al., 2014a) over different environments. In order
to compute correlations and differences in satellite-derived
AODs, the original MISR-derived AOD at a spatial res-
olution of 0.5 × 0.5∘ was rescaled to 1 × 1∘ resolution in
order to be consistent with the MODIS-based AOD. The
rescaling was performed by assigning equal weights to
each sub-grid, and the final 1 × 1∘ considered valid only
when more than half of the sub-grids have valid data.

The relative change in AOD (which relates the current
with initial AOD values) can be used to quantitatively
describe the inter-annual variations in AOD. In the present
work, the annual and seasonal relative changes in AOD (in
decimal form) are computed using the expression:

Relative AOD changea(s) =
Average AOD (2009 − 2016)a(s) − Average AOD (2002 − 2008)a(s)

Average AOD (2002 − 2008)a(s)
(1)

where subscripts ‘a’ and ‘s’ denote annual and seasonal
AOD values, respectively.

Several statistical approaches exist to quantify trends in a
time series data of a particular geophysical variable. In the
present study, linear regression analysis was used to esti-
mate annual and seasonal trends in AOD alongside trends
in key meteorological parameters. The method (Weather-
head et al., 1998) previously used in other related studies
(Kumar et al., 2014a, 2015; Dahutia et al., 2017) has a
practical advantage of simply assessing the direction and
magnitude of trend in a long-term data. Following this
method, a linear trend model (Equation (2)) was adopted:

Yt = c + 𝜔 ∗ Xt + 𝜀 (2)

where Yt is the geophysical variable for which the trend
is being determined, c is the offset (y-intercept) which
represents the value of Yt at the beginning of the time
series. Xt is the independent variable representing time,
𝜔 is the trend estimate of the geophysical variable under

consideration, while 𝜀 is the noise in the time series. The
statistical significance of the estimated trends was further
tested using the method developed by Weatherhead et al.
(1998). In this regard, trends are considered significant at a
p-value of 0.05 or a 95% confidence interval when ||

|

𝜔

𝛿

|
|
|
> 2,

whereas trends are considered significant at a 90% confi-
dence level when 1.5 <

|
|
|

𝜔

𝛿

|
|
|
< 2, where 𝛿 is the standard

deviation of the slope obtained from the linear regression.
This method has a practical advantage of assessing the
direction and magnitude of variations in a long-term
data (Zhang and Reid, 2010; Kumar et al., 2014a, 2015;
Dahutia et al., 2017; Hu et al., 2017) and was therefore
considered suitable for executing pixel-wise analysis.

A preliminary investigation of major aerosol types
found over three representative major cities (Nairobi,
Kampala and Dodoma) in EA is carried out via the
AOD550 versus AE470–660 relationship, previously used
by a number of authors (Kaskaoutis et al., 2007, 2009;
Kumar et al., 2014b, 2018; Bibi et al., 2016; Yu et al.,
2016) over different environments. As both are spec-
trally dependent parameters, AE470–660 represents the
aerosol particle-size, while AOD550 is dependent on
the aerosol column density. Therefore, AOD550 versus
AE470–660 plot qualitatively indicates the amount and
dimension of aerosols observed. Different aerosol types
were discriminated through determination of physically
interpretable cluster regions separated by solid lines that
act as threshold values of AOD550 and AE470–660. The
selection of the threshold values is very important and
varies depending on the geographical locations. In the
present study, the AOD550, AE470–660 pair ranged between
(0.015–1.63, 0.1–1.8), (0.012–0.949, 1.037–1.8) and
(0.015–1.28, 0.206–1.8) over Nairobi, Kampala and
Dodoma, respectively. Therefore, the threshold values

for constructing the scatter diagram are slightly changed
from those previously used by a number of authors
(Kaskaoutis et al., 2007; Kumar et al., 2018). Therefore,
AOD500 < 0.2 with large (>1) or small (<0.9) values
of AE470–660 corresponded to continental clean (CCB)
aerosols representing background conditions over the
three locations and clean maritime-influenced aerosols
(CMA), respectively. However, AOD> 0.3 and AE> 1.0
corresponds to turbid atmospheric condition dominated
by biomass-burning aerosols and/or urban/industrial
plumes (BUI), while very high turbid atmospheres with
AOD550 > 0.6 and AE470–660 < 0.7 is used to indicate dust
aerosol type (DDT) (Adesina et al., 2017). The remaining
gaps, considered as mixed-type aerosols (MXD), reveal
cases where aerosols are difficult to be discriminated bear-
ing in mind effects of various aerosol-mixing processes
in the atmosphere such as coagulation, condensation,
humidification and gas-to-particle conversion (Pace et al.,
2006).
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3. Results and discussion

3.1. Inter-comparison and spatial correlations of AOD
data sets

The paired monthly averaged MODIS Aqua (DT and DB)
and MISR fitted with 1:1 and regression fitting lines, and
the corresponding statistical parameters obtained over EA
are shown in Figure 2. The DB versus DT AOD correlation
was found to be strongest (r = 0.87) followed by MISR
versus DB (r = 0.76), and MISR versus DT (r = 0.72). The
latter two correlations were less strong due to differences
in instrument characteristics and the retrieval algorithms
(Tripathi et al., 2005; Kumar et al., 2015). During the
study period, MISR systematically underestimated AOD
(slopes <1) with respect to DT and DB by 31 and 34%,
respectively, while DB slightly underestimated DT by 4%.
As expected, the ‘merged product’ (combining MODIS
Aqua DT and DB AOD products) showed a relatively
higher correlation with MISR (r = 0.77) than either of the
original AOD product. This is because the product utilizes
the strength of each of the retrieval algorithm significantly
reducing the fraction of pixels with no data, thus increasing
the spatial coverage of a multitude of surface types ranging
from oceans to bright deserts. It should, however, be noted
that the performance of each of the algorithm is likely to
change depending on dominating aerosol type, underlying
surface characteristics, pollution levels and seasonality in
emission sources (Tripathi et al., 2005; Kahn et al., 2010).

In order to get deeper insights into the performance of the
algorithms, revealing areas of similarities/dissimilarities
and their magnitudes, the correlations and differences
in AODs were computed for each pixel on annual basis
(Figure 3). The moderate (>0.5–0.8) to high (≥0.8)
DT–DB correlations over most areas of the study domain
indicates that the two algorithms recorded a more or less
similar AODs owing to the same sensor platforms. How-
ever, the low (0–0.5) DT–DB correlation over the arid
and semi-arid areas of northwest of Kenya correspond to
zones where DT overestimated DB (Figure 3(d)). On the
other hand, moderate to high DT/DB–MISR correlations
(Figures 2(b) and (c)) dominated zones with low surface
reflectivity such as southwest borders of Uganda and Tan-
zania with high vegetation cover. However, low DT/MISR
correlation characterized the high reflecting arid and
semi-arid areas of northern Kenya and Tanzania where DT
underestimated MISR (Figure 3(e)). In most cases, AODs
retrieved by the MISR and MODIS Aqua DB (Figure 3(f))
showed highest correspondence in terms of area coverage
with moderate to high correlation. However, low correla-
tions amongst the algorithms over western parts of Kenya
correspond to zones with missing AOD (Figures 4(b)
and (c)). This is due to frequent cloud cover leading to
insufficient DT/DB and MISR data points, hence weaker
data analysis. Also, the differences in the sensors overpass
time and retrieval algorithms could interpret the low
DT/DB–MISR correlations in some areas of EA (Boiyo
et al., 2017b). Despite these, the AODs retrieved by the
three algorithms were similar in most areas of the study

domain, with the differences amongst the data sets being
generally less than ±0.05 (Figures 3(d)–(f)).

3.2. Spatial distributions

3.2.1. Annual distributions of AOD

AOD constitute an important parameter of atmospheric
aerosols and could be used to quantify columnar aerosol
burden in the atmosphere (Luo et al., 2014; Kumar et al.,
2015). The climatological patterns of annual mean AOD
derived from MODIS Aqua (DT and DB) and MISR over
EA during the study period are shown in Figures 4(a)–(c),
respectively. The spatial patterns of annual mean aerosol
loading were generally characterized by low, moderate
and high AOD indicating distinct features of aerosol load.
Low (<0.2) AOD centres were observed by the sensors
over highly vegetated areas, with relatively high altitude
(Boiyo et al., 2017a) and precipitation (Figure 1(a)) over
western and central parts of Kenya, and central and south-
eastern parts of Tanzania. Connecting the low AOD cen-
tres, DT and DB isolated the volcanic centre along the
Kenya–Tanzania border with moderate (0.2–0.35) AOD
values. Moderate to high (>0.35) AOD values were also
observed by the sensors over arid and semi-arid areas of
eastern and northern parts of Kenya with high temperatures
(Figure 1(b)). This could be attributed to long-range trans-
port of dust aerosols by the north easterlies (Figure 1(d))
together with those locally produced (Gatebe et al., 2001;
Ngaina and Muthama, 2014). Also, the carbonaceous
aerosols from the alkaline Lake Turkana resulted in advec-
tion of aerosols to high AOD (Boiyo et al., 2017a). A
slight difference was, however, observed in the magnitude
of AOD values retrieved by the sensors along the borders
of southwest of Uganda (over DRC) with high vegeta-
tion cover. DT, by virtue of its effective retrieval algo-
rithm over dark surfaces, showed moderate to high AOD
values, while the DB and MISR recorded moderate AOD
values, all associated with long-range transport of smoke
particles from the DRC (Gatebe et al., 2001; Boiyo et al.,
2017a). The moderate to high AOD values along the bor-
ders of southwest of Uganda could also be associated with
strong anthropogenic activities (e.g. biomass burning and
forest fires) dominant in the region which contribute sig-
nificant amount of fine-mode particles into the atmosphere.
Also, the stronger westerlies (Figure 1(d)) could transport
smoke particles from DRC to this area, increasing the
aerosol load. Additionally, the EA’s population, topogra-
phy, aerosol–climate interactions and economy play an
important role in influencing aerosol distribution over the
study domain.

3.2.2. Seasonal distribution of AOD

The seasonal patterns of AOD over EA derived from
MODIS Aqua (DT, DB) and MISR (Figures 5(a)–(c))
are consistent with the respective annual patterns
(Figures 4(a)–(c)). In terms of area coverage and strength,
the regional aerosol load was found to be high during JJA
followed by DJF and SON, and minimum during MAM.
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Figure 3. Spatial correlations and AOD differences, respectively, between MODIS Aqua-DT and -DB (a, d), MODIS Aqua-DT and MISR (b, e)
and MODIS Aqua-DB and MISR (c, f) over EA during 2002–2016. The colour scale represents the magnitude of correlation coefficient and AOD

differences. [Colour figure can be viewed at wileyonlinelibrary.com].
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Figure 4. Spatial distribution of annual mean AOD derived from (a) MODIS Aqua-DT, (b) MODIS Aqua-DB and (c) MISR over EA during
2002–2016. [Colour figure can be viewed at wileyonlinelibrary.com].

The seasonality in AOD over EA is more pronounced in
high AOD centres depending on the seasonal variations
of aerosol sources. During the local dry seasons, high
AOD values were noticed over the dust dominant zones of
northwest and northeast Kenya as well as the southwest
parts of Uganda and Tanzania. On the other hand, very low
AOD values (<0.1) characterized the high precipitation
areas (Figure 1(a)) of western and central parts of Kenya,

northeast Uganda and southwest of Tanzania during the
local wet seasons. The seasonal patterns of AOD over
EA are closely associated with the seasonal cycle of
precipitation (de Graaf et al., 2010) with the two depicting
a more or less inverse relationship between them. The
enhanced precipitation during MAM (Figure 1(a)) causes
large wet deposition and suppresses emission of aerosols
from the ground.
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Figure 5. Same as in Figure 4, but for different seasons. [Colour figure can be viewed at wileyonlinelibrary.com].

On the other hand, the enhanced aerosol loading during
the local dry seasons could be attributed to increased
anthropogenic activities (land preparations, biomass burn-
ing and forest fires) which release significant amount of
smoke particles into the EA’s atmosphere (Ngaina and
Muthama, 2014; Makokha et al., 2017). The stronger
near-surface winds during JJA over the arid and semi-arid
areas of north and eastern parts of Kenya (Figure 1(d))
could accelerate the formation of dust aerosols. The high
temperatures in association with strong winds during DJF
(Figures 1(b) and (d)) play a crucial role in heating and
lifting up loose soil (Boiyo et al., 2017b). This is aggra-
vated by the north easterlies (Figure 1(d)) which transports
dust aerosols from the Arabian Peninsula (Gatebe et al.,
2001; Boiyo et al., 2017a) to north and eastern parts
of the study domain. The enhanced aersosols from
aforementioned mechanisms and sources increase

backscattering of light resulting in high AODs observed
by the sensors during the local dry seasons.

3.3. Seasonality in AOD and association
with meteorology

3.3.1. Annual, seasonal and monthly variations of AOD

The 14-year detailed statistics of annual and seasonal mean
AOD along with standard deviation and magnitude of
inter-annual variability estimated over EA and its consti-
tuting countries are presented in Table 1 and Figure 6. The
annual averaged AOD values were found to be 0.20± 0.01,
0.18± 0.01 and 0.20± 0.02 as observed by the MODIS
Aqua-DT, -DB and MISR, respectively, with the errors
indicating temporal heterogeneity. Regarding individual
countries, Uganda noticed highest annual mean AOD fol-
lowed by Kenya and Tanzania (Table 1). Notably, the
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enhanced aerosol loading over Uganda and Kenya could
be attributed to the fact the two countries are aerosol
receptors (Boiyo et al., 2017a). They are located between
two aerosol sources: (1) anthropogenic activities in central
Africa where biomass burning activities results in signifi-
cant amount of smoke particles transported to the northern
part of EA by the westerlies (Hao and Liu, 1994; Ogwang
et al., 2016), (2) natural dust emissions locally produced
from the arid and semi-arid lands in north and eastern
part of EA, alongside those transported from the Ara-
bian and Saharan Deserts (Gatebe et al., 2001; de Graaf
et al., 2010) by north easterlies during certain times of the
year (Figure 1(d)). Meanwhile, the daily averaged AODs
retrieved by the three sensors over EA and the constitut-
ing countries generally showed a single peak distribution
of frequencies of occurrences centred at the bin interval
0.1–0.2 (Appendix S1 and Figure S1, Supporting informa-
tion). This signifies generally a less polluted environment
dominated by particular aerosol type.

The seasonally averaged AOD values were noticed to
be high (>0.2) during JJA and low (<0.2) during MAM
(Table 1 and Figure 6). This pattern was also followed
by the constituting countries and is consistent with the
results presented in Section 3.2.2. The monthly mean
AOD retrieved by the sensors was found to be lower
(higher) in March (July) (Figure 6). All the sensors gen-
erally observed second AOD trough in November and
peak in February. The monthly distribution of AOD for
each of the countries was found to be consistent with the
regional pattern (Table 1 and Figures 6(b)–(d)). This sig-
nifies the role played by individual countries in influencing
the regional aerosol load. As aforementioned, the monthly
variation in AOD over EA is closely associated with vari-
ations in emission sources, anthropogenic activities and
seasonal cycles of precipitation. A combination of biomass
burning (during December–February and June–July) and
dust aerosols (locally derived and due to long-range trans-
port) could enhance the aerosol load during these months
(Makokha et al., 2017). The low AOD during March–May
and September–November is attributed to large wet depo-
sition (Figure 1(a)) and reduced anthropogenic activities
(de Graaf et al., 2010; Boiyo et al., 2017a).

3.3.2. Inter-annual variability and linear trends in AOD

The magnitude of inter-annual variability in AOD was esti-
mated during the entire study period over EA and the con-
stituting countries (Table 1). Overall, AOD values fluctu-
ate from year to year by 5% (as observed by MISR) and
∼6% as observed by DT and DB. The lowest values of
inter-annual variability in AOD over EA were the values of
∼6% recorded in Tanzania, with generally low AOD val-
ues. However, Kenya and Uganda, with enhanced AOD,
had fluctuations ranging between 5 and 9% as observed
by different sensors. On seasonal basis, the lowest mag-
nitude of inter-annual variability in AOD occurred during
SON over EA, with similar changes (but different mag-
nitudes) observed over each of the countries (Table 1).
The highest fluctuation was observed during MAM (for

DB and MISR) and DJF for DT with the same pattern
(but different magnitudes) consistent over the three coun-
tries. Generally, the magnitudes of inter-annual variability
in AOD over EA are influenced by changes in emissions
and meteorology. There are two major aerosol emission
sources over EA: (1) anthropogenic emissions resulting
from industrial–vehicular emissions, forest fires, agricul-
tural and biomass burning (Van Vliet and Kinney, 2007;
Makokha and Angeyo, 2013; Ngo et al., 2015) and (2)
natural dust emissions over the arid and semi-arid areas
in north of EA with low (<600 mm year−1) annual rain-
fall (Figure 1(a)). The meteorological factors (e.g. wind,
relative humidity, temperature and precipitation) control
production, transport pathway from source to receptor
region, exchange between the boundary layer and free tro-
posphere, and removal processes occurring over the source
and receptor regions (Panicker et al., 2013; Luo et al.,
2014).

It is worth mentioning that AOD values over EA
consistently increased during post-2009 (2009–2016)
(trend year−1 = 0.00279, 0.00221 and 0.00247 for DT,
DB and MISR, respectively) as compared to pre-2009
(2002–2008) with respective trends year−1 of −0.00148,
−0.000387 and −0.00109. In order to detect and quantify
this, the percentage (%) variations in trends over EA and
each of the countries were analysed during the entire study
period, pre-2009 and post-2009 periods (Table 2). During
the entire study period, AOD values over EA consistently
increased by 0.52, 0.57 and 0.74% year−1 as observed
by MISR, DT and DB, respectively (significant at 95%
represented in red colour and 90% in blue). Furthermore,
a significant increase in AOD by 0.95 and 0.58% was
observed by DB and MISR, respectively, over Kenya,
while Uganda recorded a significant increase of 0.67 and
1.06% observed by DT and DB, respectively. The positive
trend in Tanzania was less significant as observed by all
the sensors. Except for Kenya, with an insignificant annual
increase, a general decrease in AOD trend was observed
by the sensors during pre-2009. However, all the sensors
observed an increase in AOD trend during post-2009.
Meanwhile, the seasonal AOD trends generally increased
across the seasons over entire EA and each of constituting
countries during the entire study period. This is with the
exception of MAM that showed an insignificant negative
trend over entire EA, Kenya and Tanzania as observed by
DT (Table 2). The trends were high and reliable during
the local dry seasons. Specifically, significant trends
at 95% (90%) confidence level were observed by DB
(MISR) during DJF over EA and 90% confidence level
by DB and MISR over Kenya. The overall trends were
marked by a general decrease (increase) during pre-2009
(post-2009), with the increase being generally enhanced
and significant.

The trends in AOD patterns have been investigated by
a number of authors. Negative AOD trends in China have
been reported over receptor regions, as positive trends
characterize regions overburdened by anthropogenic and
natural aerosols sources (Luo et al., 2014; Tan et al.,
2015a; Hu et al., 2017). The negative trends over South
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Table 1. Regional statistics of AOD for the period 2002–2016 derived from MODIS Aqua (DT, DB) and MISR over EA, Kenya,
Uganda and Tanzania.

Sensor Season EA Kenya Uganda Tanzania

M MAG M MAG M MAG M MAG

DT MAM 0.16 ± 0.02 11.77 0.15 ± 0.02 10.62 0.16 ± 0.02 14.14 0.14 ± 0.01 13.25
JJA 0.23 ± 0.02 12.67 0.22 ± 0.02 18.48 0.31 ± 0.02 14.18 0.21 ± 0.02 12.25

SON 0.19 ± 0.01 6.78 0.14 ± 0.01 8.95 0.18 ± 0.02 7.85 0.18 ± 0.02 11.46
DJF 0.21 ± 0.02 13.16 0.13 ± 0.02 16.81 0.21 ± 0.03 16.01 0.18 ± 0.02 15.45

Annual 0.20 ± 0.01 5.84 0.16 ± 0.02 8.51 0.22 ± 0.02 7.04 0.18 ± 0.02 6.45
DB MAM 0.12 ± 0.01 12.74 0.16 ± 0.02 10.21 0.12 ± 0.02 17.46 0.10 ± 0.01 14.77

JJA 0.22 ± 0.02 9.82 0.24 ± 0.02 13.54 0.29 ± 0.01 13.14 0.22 ± 0.02 9.92
SON 0.21 ± 0.02 7.51 0.18 ± 0.02 8.42 0.14 ± 0.02 9.76 0.22 ± 0.03 9.43
DJF 0.15 ± 0.01 10.17 0.16 ± 0.01 7.26 0.15 ± 0.02 13.18 0.12 ± 0.02 14.52

Annual 0.18 ± 0.01 6.02 0.19 ± 0.02 7.35 0.15 ± 0.02 13.18 0.17 ± 0.01 6.37
MISR MAM 0.15 ± 0.02 6.03 0.17 ± 0.01 7.83 0.17 ± 0.01 13.84 0.12 ± 0.02 13.67

JJA 0.21 ± 0.02 9.32 0.22 ± 0.02 12.13 0.22 ± 0.02 12.25 0.17 ± 0.02 9.95
SON 0.22 ± 0.01 5.42 0.19 ± 0.02 6.22 0.17 ± 0.01 7.32 0.21 ± 0.01 7.66
DJF 0.21 ± 0.02 10.81 0.18 ± 0.02 6.83 0.22 ± 0.02 16.27 0.20 ± 0.02 12.46

Annual 0.20 ± 0.02 5.02 0.19 ± 0.02 4.84 0.20 ± 0.01 5.77 0.18 ± 0.02 6.45

The symbols M (±𝜎) and MAG refers to the mean (±standard deviation) and magnitude of inter-annual variability (in %), respectively. The AODs
corresponding to MODIS Aqua (DT, DB) and MISR are derived at 500 and 555 nm, respectively.

Table 2. Annual and seasonal percentage (%) variations in trends per year of AOD derived from MODIS Aqua (DT, DB) and MISR
during entire period (2002–2016), pre-2009 (2002–2009) and post-2009 (2009–2016) over EA.

Annual MAM JJA SON DJF

DT DB MISR DT DB MISR DT DB MISR DT DB MISR DT DB MISR

Entire period
EA 0.57 0.74 0.52 −0.4 0.48 0.19 0.98 0.76 0.61 0.38 0.52 0.20 0.90 1.15 1.16
Kenya 0.60 0.95 0.58 −0.7 0.58 0.28 1.42 1.22 1.59 0.56 0.70 0.27 0.77 1.12 0.73
Uganda 0.68 1.06 0.43 0.17 1.31 0.63 0.48 0.66 0.12 0.83 1.4 0.05 0.75 0.97 0.92
Tanzania 0.19 0.48 0.41 −0.9 0.2 0.16 0.73 0.38 0.45 0.12 0.23 0.17 0.46 1.23 0.88
Pre-2009
EA −0.2 −0.2 −0.6 0.59 2.44 0.96 −0.04 −0.01 −0.01 −0.7 −1.1 −0.5 −1.1 −1.4 −0.3
Kenya 0.72 0.84 0.27 0.01 2.73 0.79 0.05 0.07 0.09 1.44 −0.4 0.35 0.96 −0.3 −2.0
Uganda −0.6 0.17 −1 1.52 3.57 3.52 −0.2 −0.1 −0.1 1.37 4.09 1.42 −1.9 −2.7 −6.1
Tanzania −1.4 −1 −0.9 0.08 1.58 0.76 −0.03 −0.02 0.01 −2.4 −2.4 −1.4 −2.4 −1.5 −2.7
Post-2009
EA 1.82 1.23 1.22 0.87 1.14 1.23 0.71 0.42 0.05 −0.1 0.17 −0.5 3.64 3.62 3.8
Kenya 0.27 0.32 −0.0 −0.7 −0.0 0.20 0.57 0.18 −0.4 −1.0 −0.4 −0.6 1.96 1.82 1.55
Uganda 1.26 1.36 1.19 0.28 1.66 0.98 0.71 0.5 −1.1 −0.2 0.32 0.97 3.48 3.06 3.77
Tanzania 1.58 1.56 1.66 1.03 1.76 2.56 0.21 0.23 0.03 −0.3 −0.1 −0.8 4.66 5.67 4.59

The numerals in bold are significant at 95% confidence level, whereas those in italic are significant at 90% confidence, and the rest are less significant.

Korea were attributed to reduced emissions of pollu-
tants from factories and implementation of advanced
technologies that minimizes particle emissions (Pan-
icker et al., 2013). Similar variations in trends have been
reported over different regions of SA (Kumar et al., 2014a,
2015; Adesina et al., 2016), where negative trends were
attributed to the strict implementation of suitable environ-
mental protection policies aimed at reducing particulate
matter emissions.

In the present study, the negative trends observed dur-
ing pre-2009 (though insignificant) interprets that EA
experienced low AOD attributed to lower population (by
then), characterized by reduced anthropogenic activi-
ties, shrunken economic growth and sparse industries
(Makokha et al., 2017; Boiyo et al., 2017a). In contrast,
increasing AOD trends during the entire period and

post-2009 indicates an increase in the aerosol loading
attributed to: (1) population growth leading to increased
anthropogenic activities (Gatebe et al., 2001; Ngaina
and Muthama, 2014), (2) industrialization resulting
to increased anthropogenic emissions (Mabasi, 2009;
Ngo et al., 2015) and (3) climate change occasioned
by increased temperature and reduced precipitation
(Yang et al., 2015; Kerandi et al., 2017). These results in
increased photochemical processes with reduced deposi-
tion and increased emission of dust aerosols from the arid
and semi-arid regions of EA. As previously mentioned, the
enhanced positive trends during local dry seasons are con-
sistent with seasonal cycles of emission sources, transport
pathways and modulations induced by local meteorolog-
ical conditions. However, the decreasing trends observed
by DT during MAM (though insignificant) are closely
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Figure 6. Monthly (a–d) and seasonal (e–h) mean variations of AOD observed over entire EA (a, e), Kenya (b, f), Uganda (c, g) and Tanzania (d, h)
during the study period.

associated with seasonal cycles of precipitation and
anthropogenic activities.

3.3.3. Association between the trends in AOD
and meteorology

In order to establish a potential association between trends
in AOD and regional meteorology, the trends in four

important meteorological parameters, i.e. temperature,
wind speed, relative humidity and precipitation over EA
and each of the individual countries were investigated
during the study period. The study relied solely on the
relationships between AOD trends and those of the mete-
orological parameters. However, deeper insights into the
causality between the observables as well as the role of
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atmospheric transport will be investigated in our future
modelling studies. A rise in temperature is supposed to
intensify surface heating resulting to increased convection
hence higher aerosol loading. Higher temperatures and
relative humidity during dry periods intensify hygroscopic
growth of aerosols and gas-to-particle conversion process.
This in turn produces more secondary aerosols resulting
in high AOD (Tan et al., 2015b; Floutsi et al., 2016;
Kang et al., 2016). Temperature over EA and each of
the constituting countries showed a significant increase
(Figure 7(a)) during the entire study period, suggesting
that changes in temperature could facilitate additional
input of aerosol in the atmosphere. On the other hand,
wind speed bears a decisive role in transporting aerosols
from source to receptor regions. A decline in wind speed
could weaken the transport of aerosols leading to increas-
ing (decreasing) AOD trends over the source (receptor)
regions (Luo et al., 2014; Tan et al., 2015a). Generally,
the positive AOD trends observed over EA could be con-
nected to the decline in surface winds (Figure 7(b)) which
leads to more accumulation of aerosols in the source
regions.

Besides, high temperatures and RH intensifies
gas-to-particle conversion processes resulting in ele-
vated concentration of fine-mode aerosols (Kumar et al.,
2015; Kang et al., 2016). Trends in RH (Figure 7(c)) over
EA and the constituting countries generally decreased with
increase in an aerosol load, indicating that the RH growth
of AOD was less significant during the study period.
Furthermore, precipitation can affect the aerosol burden
especially dust through several mechanisms: (1) precip-
itation scavenging removes aerosol particles from the
atmosphere lowering its concentration; (2) it increases soil
moisture suppressing wind-induced dust emissions from
the ground and (3) fosters vegetation growth, which could
further inhibits dust emissions. Hence, trends in precipita-
tion could explain trends in AOD over EA. Precipitation
over EA and each of the individual countries showed a
significant decrease (Figure 7(d)) which is consistent with
investigations by a number of authors including Liebmann
et al. (2014), Maidment et al. (2015) and Ongoma and
Chen (2017). As trends in precipitation showed inverse
pattern to those in AOD, it may be implied that reduced
precipitation could be responsible for the observed aerosol
load and vice versa. In addition to regional meteorology,
changes in local emissions and sources could interpret
escalating AOD over EA and should be a subject of future
research.

3.4. Spatial trends and tendencies in AOD

The linear trend analysis based on domain averaged AOD
(Section 3.2.2) revealed an upwards AOD trend over EA.
In order to detect and identify specific locations with pos-
itive and negative trends leading to the observed over-
all trends, pixel-wise AOD trends and relative changes
(tendencies) were computed, with the former evaluated
at 90% confidence level. The computed AOD tenden-
cies unravel existence of any prominent changes in the

overall aerosol loading during the first (2002–2008) or
second half (2009–2016) halves of the 14-year study
period. The changes could be different from the corre-
sponding AOD trends, which refers to continuous time
series (Mehta, 2015). The spatial distribution of annual
AOD trends retrieved from DT, DB and MISR is shown
in Figures 8(a)–(c), respectively, while Figures 10(a)–(c)
shows the respective tendencies observed over EA. Com-
paring the patterns of variation in trends and tendencies
with the average annual and seasonal AOD distribution
(Figures 4 and 5), it is revealed that positive (negative)
trends generally correspond to high (low) AOD centres,
further signifying the role of emission sources in enhanc-
ing AOD distribution over EA.

An overall increase in annual AOD trends and tenden-
cies was observed over most regions in Kenya and Uganda
except, southwest of the respective countries. The trends
and tendencies were higher (>0.002 and >0.2 year−1,
respectively) and significant over the arid and semi-arid
areas of northern parts of EA dominated by dust. Positive
AOD trends and tendencies also dominated over most
parts of Kenya as observed by DB, being relatively high
and significant over western and northeast parts of Kenya.
Furthermore, MISR noticed significant positive trends
over western parts of Kenya. On a seasonal basis, positive
trends and tendencies (Figures 9(a)–(c) and 11(a)–(c))
dominated most of EA’s domain in all seasons except
MAM with prevailing ‘long rains’ (Figure 1(a)). The
magnitude of negative trends and changes noticed
during MAM were more pronounced as observed by
the MODIS Aqua-DT followed by MISR. Across all
seasons, the trends were relatively high and signifi-
cant over north part of EA as observed by the three
sensors.

The observed positive trends in most parts of EA imply
an increase in aerosol load, whereas negative trends
interpret reduced load. As outlined in Section 3.2.2, the
magnitudes and signs of trends and relative changes are
influenced by both emission and meteorological factors.
EA is experiencing an overall increase in tempera-
ture accompanied by reduced precipitation and wind
speed (Indeje et al., 2000; Yang et al., 2015), conditions
favourable for increased aerosol emmisions. The positive
trends over arid and semi-arid regions of northern part
of EA could be associated with reduced precipitation
(Figure 1(a)) resulting to an increase in locally generated
dust (Gatebe et al., 2001; Ngaina and Muthama, 2014),
while those observed in the border regions with DRC
could be due to intense biomass burning activities (Hao
and Liu, 1994; de Graaf et al., 2010). In addition to this,
local anthropogenic activities arising from biomass burn-
ing and industrial–vehicular emissions (Kinney et al.,
2011; Makokha and Angeyo, 2013; Ngo et al., 2015)
could interpret the increasing AOD trends over EA. On
the other hand, negative trends observed during MAM are
associated with large wet deposition of aerosols resulting
from the seasonal cycles of precipitation (de Graaf et al.,
2010; Makokha et al., 2017).
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3.5. Aerosol discrimination process

In order to investigate the dominant aerosol type over
selected cities in EA, the AOD550 versus AE470–660 scatter
diagrams were constructed using the threshold values out-
lined in Section 3.3.1. Generally, CCB aerosols type pre-
sented the largest number of cluster points, followed by
BUI and MXD aerosol types, whereas CMA and DDT
showed the least (Figure 12). The percentage contribu-
tions of each of the four different types of aerosols noticed
over the three locations are also shown in all the panels in

Figure 12. During the study period, CCB was the dominant
aerosol type constituting 75.71, 74.38 and 73.32% over
Nairobi, Kampala and Dodoma, respectively. The respec-
tive contribution from CMA (0.38, 0.07 and 0.52%) and
DDT (1.46, 0.07 and 1.57%) were limited due to their large
proximity from the ocean and deserts. Also, the enhanced
precipitation (Figure 1(a)) caused large wet deposition of
aerosols as well as suppressing emission of dust par-
ticles from the ground. The influence of BUI aerosol
type was significant with contributions of 7.25, 9.97
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Figure 9. Same as in Figure 8, but for the seasonally averaged spatial trends in AOD. [Colour figure can be viewed at wileyonlinelibrary.com].

and 6.84% over Nairobi, Kampala and Dodoma, respec-
tively. This is attributed to the fact that the three loca-
tions considered are highly urbanized and dominated by
industrial–vehicular emissions (Kinney et al., 2011; Ngo
et al., 2015; Makokha et al., 2017). They are also closer
to major agricultural zones where frequent crop-residue
burning occurs (Mabasi, 2009; Makokha and Angeyo,
2013). Notably, the influence of MXD aerosol type was
significant contributing to 15.22, 15.65 and 17.78% over
Nairobi, Kampala and Dodoma. In summary, it is worth
mentioning that the averaged contribution of each of the
five aerosol types over the three locations in EA during
the study period were sequenced from high to low as CCB
(74.47%), MXD (16.22%), BUI (8.02%), DDT (1.03%)
and CMA (0.32%).

4. Summary and conclusions

Using 14 years (2002–2016) of Level 3 aerosol data sets
retrieved from three algorithms (MODIS Aqua-DT, DB

and MISR), this study presented an in-depth understanding
of spatio-temporal distribution and trends in AOD over
EA as well as examined the consistency and differences
between the data sets. An inter-comparison between
AODs retrieved by different algorithms over EA noticed
highest correlation between DT and DB (r = 0.87), fol-
lowed by MISR and DB (r = 0.76), and least for MISR and
DT (r = 0.72). The AODs retrieved from the algorithms
revealed significant positive correlations with moder-
ate (>0.5–0.8) to high (≥0.8) correlations dominating
the study domain, whereas a few regions exhibited low
(0–0.5) positive correlations. The spatial patterns of
annual mean AOD observed over EA were generally char-
acterized by low (<0.2), moderate (0.2–0.35) and high
(>0.35) areas. Low AODs were observed by the sensors
in the high altitude and densely vegetated regions over
western and central parts of Kenya and central Tanzania.
Moderate AOD values were found over the dust dominant
arid and semi-arid zones of the north part of EA. A single
peak distribution of AOD frequency of occurrences were
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observed over EA and each of the constituting countries
signifying a less polluted environment dominated by a
particular aerosol type. The seasonal AOD climatolo-
gies over the entire study domain were consistent with
that of the annual patterns, being low during the local
wet seasons and high during the local dry seasons. This
has been attributed to seasonality in emission sources,
anthropogenic activities and modulations induced by
regional meteorological factors such as temperature,
relative humidity, wind speed and precipitation.

Analysis of AOD trends over EA during 2002–2016
showed a significant increase by 0.52, 0.57 and
0.74% year−1 as detected by the MISR, DT and DB,
respectively. Positive AOD trends dominated during the
local dry seasons, being more pronounced during JJA
over the dust dominant regions north of EA. On the other
hand, negative trends characterized the local wet season

(mainly MAM) attributed to large wet deposition process.
The trends in aerosol loading were well aligned with
those in meteorological parameters: increasing with rise
in temperature, decrease in wind speed and decrease in
precipitation. It was later revealed that CCB (74.47%) was
the dominant aerosol type over selected cities in EA. Other
aerosol types made contributions sequenced from high to
low as MXD (16.22%), BUI (8.02%), DDT (1.03%) and
CMA (0.32%).

This work conclusively compared spatial variations and
trends in AOD retrieved from three different algorithms
over EA. Despite variations in the emphasis that each algo-
rithm places on the strength of AOD, no critical differ-
ences between the data sets were detected over EA. The
data sets showed close resemblance in most aspects, except
a few cases where either of the algorithms failed owing
to limitations imposed by the algorithm to the underly-
ing surface types. It is, therefore, evident that either of
the algorithms could be well suited for qualitative and
quantitative aerosol related studies over EA. However,
based on this work and our recent investigation (Boiyo
et al., 2017b), MODIS Aqua-DT could be well suited to
characterize AOD over the most locations of EA. The
present work has also outlined a possible link between
trends in AOD and those in meteorological parameters.
Notably, the change in emission has a potential effect of
adversely affecting AOD trends over EA. In order to inves-
tigate this in details, revealing the causal relationship, a
modelling study is planned as a future research project
over EA.
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