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Abstract 

Among other factors, migration has significantly contributed to the spread of HIV. Recent studies have revealed 

that new infections occur along major transport corridors and truck-drivers have overall higher prevalence rates of 

HIV and sexually transmitted infections than non-truck drivers’ counterparts. Therefore, there exist a link between 

population mobility and HIV infection, as populations along transport corridors remain substantial contributors of 

new infections. This research work documents a deterministic model of the dynamics of HIV transmission between 

two closed patches that incorporates the Monod equation in migration with truck drivers being the agents of HIV 

transmission. Migration is considered as a social determinant to health and have a significant impact on health‐

related vulnerabilities and access to services. We assumed that susceptible individuals become infected via sexual 

intercourse with HIV infected truck drivers and all the infected individuals ultimately developed AIDS 

exponentially. The model also assumed that the patches have different infection and susceptibility rates. The 

patches basic reproduction number, 𝑅0 was determined using the Next Generation Matrix. The results revealed 

that 𝑅0 should be kept below unity to eradicate the transmission of the virus. The Disease-Free Equilibrium Point 

was obtained based on the signs of the Eigen values of the Jacobian matrix. In the absence, the Disease-Free 

Equilibrium Point is both Locally Asymptotically and Globally Asymptotically Stable. It was further proved that 

the model did not display Endemic Equilibrium Point under a special property for epidemic models. The model 

findings are vital in guiding health practitioners, governmental and non-governmental health agencies in the 

development of effective mitigation strategies to reduce the spread of HIV.  
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 1. Introduction 

1.1 Background of the study 

Human immunodeficiency virus (HIV) is a retrovirus that mainly infects CD4+ T-cells. The infected cell 

undergoes through three stages; asymptomatic (0-3yrs); Symptomatic (3-8yrs), AIDS (8yrs and above), based on 

the viral load and CD4+ counts. AIDS is Acquired Immunodeficiency Syndrome, that consist of a set of symptoms 

and illness caused by HIV. The immune system of an infected individual becomes too weak to fight further 

infections or illness.  CD4+ T-cells produces new virions, which lead to more cell infection and viral production. 

Among the humans it’s transmitted as a result of sexual intercourse between the susceptible individual and infected 

person. It’s not transmitted through saliva, urine or sweat. HIV is found in vaginal fluid, semen, blood, anal fluids 

and breastmilk. AIDS has no cure but infected persons can enjoy better living if given support and treatment is 

taken correctly (Avert 2019). HIV continues to be a major global public health concern, having claimed more than 

35 million lives so far despite various attempts to reduce this menace (WHO and UNAIDS 2017). Approximately, 

36.7 million people lived with HIV at the end of 2016 whereas 1.8 million people became infected in 2016 globally 

(WHO and UNAIDS 2017). The African region is reported to be the most affected with 25.6 million people who 

lived with HIV in 2016.The region also accounted for almost two thirds of the total global new HIV infections. 
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Key populations who were at increased risk of HIV included: men who have sex with other men, people who inject 

drugs, people in prisons and other closed settings, sex workers and their clients and transgender. According to 

UNAIDS Report 2017, Kenya had the joint fourth–largest HIV epidemic in the world (alongside Mozambique and 

Uganda) with 1.6 million people who lived with HIV in 2016. In the same year, 36,000 people died from AIDS-

related illness, while this was still high it has declined steadily from 64,000 in 2010. 

One of the key contributors to the spread of HIV is migration of individuals from one region to another. Migration 

brings more people into close contact and creates a greater mixing of different population groups, that creates ready 

environment for viral transmission. Through the movement of infected persons, migration also provides a vehicle 

to transport diseases to places where they have been previously unknown. However, HIV/AIDS require intimate 

contact for transmission to occur, and migration may help facilitate this by creating a sub-population that is 

economically, socially, and geographically marginalized. Migration is now a global phenomenon, with 3% of the 

world’s population living temporarily or permanently outside their country of origin (World Bank 2009). Climate 

change, urbanization, and expanded trade are likewise driving increased population mobility within and between 

countries. The relationship between migration and HIV/AIDS was recognized by the United Nations during the 

General Assembly’s Special Session on HIV/AIDS in June 2001. The epidemiology of HIV along transport 

corridors is not restricted to truck drivers and sex workers. However, lack of effective HIV prevention interventions 

in spaces of vulnerability along Kenya’s major transport corridors is cause for alarm. Long distance truck drivers 

have been identified as primary dispersers of HIV in sub-Saharan Africa. Truck drivers usually have frequent 

overnights stays away from home, fewer social controls and excessive waiting periods in ports and border 

crossings, where the availability of commercial sex increases their vulnerability to infectious diseases and other 

health problems. Previous reports in India and Kenya found HIV prevalence of 15.9% and 17.8% respectively 

among the long-distance drivers. Condom use among long distance drivers was low and/or inconsistent. Long 

distance truck drivers are vulnerable to sexually transmitted diseases for several reasons; truck drivers are always 

on the move, have little or no access to sexual health services, migratory nature of their occupation often disconnect 

them from their family and community. Truck drivers rarely interact with orthodox practitioners and instead seek 

help of quacks and home remedies to cure STIs and many lack information about STIs and HIV/AIDS and their 

prevention. Long-distance truck drivers have robust but diverse sexual cultures. UNAIDS indicated that 

individuals who lived in extreme mobility; military personnel, truck drivers, among others experienced high 

vulnerability contexts to infection by HIV (UNAIDS, UNAIDS Gap report 2014). Truck drivers therefore 

significantly contribute to HIV/AIDS transmission in many countries. 

Metapopulation mathematical models have been developed to capture the spatial scale for the spread of disease 

dynamics. Centre for Media Studies conducted a survey in 2006 among the vulnerable groups; truck drivers were 

found to be the most potent carriers of HIV due to numerous reasons. The findings proved that 40% truck drivers 

were susceptible to have AIDS. Some of the facts collected by CMS are that 95% of the truckers with AIDS were 

in the age group of 18 to 45 years and 80% were married and around 75% were in the profession for more than 

five to six years. This showed that more than illiteracy, ignorance and being away from home for long durations 

were the main reasons behind the spread of the disease among the truckers’ community. Rotich et al (2016) studied 

three levels of disease status in 𝑛- patch metapopulation using a simple SIR-HIV epidemic model in a one-

dimensional nearest neighbor coupling lattice. The basic reproductive ratio 𝑅0 (𝑘), which is a function of coupling 

strength 𝑘, was shown to affect stability characteristics of equilibrium points. The disease-free equilibrium point 

was proved to be globally asymptotically stable irrespective of the value of 𝑘 but the stability of the endemic 

equilibrium point depended on the coupling strength 𝑘. It was found that at the critical value of coupling strength 

𝑘 ≥ 0.67, the sub-populations dynamics was synchronized while for 𝑘 ≤ 0.3 the subpopulation dynamics was 

independent. Patch isolation strategy for the control of HIV dispersion required a critical coupling strength of 𝑘 𝑐 ≤
 0.15. This interaction restriction reduced 𝑅0 to values less than one, and the disease was eliminated which made 

isolation effective. Demographic and epidemiological parameters of Vihiga County in Kenya were used in the 

study. International Medical Society (2013) analyzed the prevalence of HIV infection and sexual practices among 

long distance truck drivers who travelled through capital of the Northeast of Brazil. A cross-sectional survey was 

carried out for five months. Data were collected through application of forms and a rapid –test with blood collection 

for detection of viral antibodies. It was observed that 100% of respondents were male, 57.5% had age between 31 

and 50 years, 69% were married or had a stable relationship and 58.6% lived in the Northeast. The identified risk 

factors were: low education (50%); alcohol use (69.5%); multiple sexual partners (50.3%); lack of use or sporadic 

use of condoms (56.3%). The HIV prevalence detected among truck drivers was 0.8%. The risk factors presented 

among the truck drivers indicated vulnerability to HIV infection by exposing contamination as well as contributing 

to spread of the virus in the general population.  
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Boahemaa-Atta (2014) investigated the prevalence of HIV, HBV, syphilis and the risk factors among truck drivers 

using the seaport at Tema. A multivariate analysis was done and the results showed that knowledge of HIV, HBV 

and syphilis infections and preventive measures were high among the truck drivers. The data indicated a low HIV 

prevalence among truck drivers in Ghana, however the high prevalence of HBV and syphilis coupled with their 

risky behavior suggested an increase potential risk of HIV in the truck driving population in Ghana. 

Mastroberardino (2015) presented a non-linear mathematical model for the transmission dynamics of HIV/AIDS 

in Cuba. It was assumed that the only mode of transmission is through contact with those yet to be diagnosed with 

HIV. A linear stability analysis was performed to find the equilibrium of the governing non-linear system. The 

analysis showed the existence of disease-free and Endemic Equilibrium points and that the stability existence was 

based on the value of the basic reproduction number. In particular the DFE was locally and globally asymptotically 

stable for 𝑅0 < 1 . A unique EE existed whenever 𝑅0 > 1, it was locally and globally asymptotically stable 

whereas the DFE was unstable, and thus the model in consideration does not exhibit a backward bifurcation. 

Omondi et al  (2018) presented a HIV-transmission model with five compartments to describe the trend of HIV-

infection within different age groups in Kenya. The model analysis showed that the model has two equilibria, the 

infection free equilibrium and the endemic equilibrium that are both globally asymptotically stable when the 

threshold  𝑅0 < 1 and 𝑅0 > 1, respectively. The model was fitted to data and the HIV trend within different age 

groups obtained. A sensitivity analysis revealed that the parameters with the most control over the epidemics were 

treatment rate of HIV patients and the effective contact rate between the susceptible individuals and infected 

individuals. The results had huge implications to designing policies aimed at reducing new infections especially 

amongst the young adults. Augustino Isdory (2015) studied the impact of human mobility on HIV transmission in 

different parts of Kenya. An SIR Meta population model that incorporated the different regions within the country 

was developed. The model was parameterized using the demographic census data at the time of 2009, HIV data, 

and mobile phone data adopted to track human mobility. It was found that movement between different regions 

appears to have relatively small overall effect on the total increase in HIV cases in Kenya. However, the most 

important consequence of movement patterns was transmission of the disease from high infection to low 

prevalence areas. Mobility slightly increased high incidence rates in regions with initially low HIV prevalence and 

slightly decreased incidences in regions with initially high prevalence.  

Although previous studies have considered the impact of population mobility on HIV transmission, there is no 

clear mathematical model that accounts for HIV transmission between geographical regions with different 

susceptibility and infection rates. This raises an important question, does migrations affects the spread of HIV? 

The aim of this study was to: develop a deterministic model of HIV transmission between two closed patches that 

incorporates the Monod Equation in migration of truck drivers being the agents of transmission; compute the basic 

reproduction number; determine the equilibria points and analyze their stabilities and finally carry out numerical 

simulations. The model was developed using the population based compartmental structure, the Monod function 

was used to estimate the effect of the number of sex workers on migrations. The basic reproduction number was 

determined using the Next Generation Matrix method. Numerical simulations were carried out using the available 

HIV/AIDS population data and parameter values for Mombasa and Nairobi. Section 2 will be Model formulation, 

section 3; model analysis, section 4; results and discussions and section 5; conclusion and recommendations. 

2.0. Model formulation  

2.1. Introduction 

The model is based on the classical SI two-patch spatial structure where the hosts move between the two patches 

at some rate independent of disease status. 

2.2. Model assumptions 

We assume mass-action mixing and transmission (𝛽𝑆𝐼) of the population. The availability of Female Sexual 

Workers is taken as the limiting factor to migration of truck drivers following the Monod function. The hosts move 

between the two patches at constant specific migration rate. No vital dynamics of births and natural deaths are 

considered in the model. Thus, a constant population 𝑆 + 𝐼 + 𝐷 = 𝑁. The time frame for migration of truck drivers 

is considered to be short. The trucks entering and leaving are only restricted to the patches. The main feature of 

the model is that the transmission of HIV is contributed by migration and contact of infected individuals and 

individuals with AIDS with the susceptible sub-population. The individuals with HIV contribute more to the force 

of infection than those with AIDS. The infection rates for the two patches is considered to be varying. 

2.2. Model description  

The parameters and variables used in the model are described as shown in Table 1 and 2. 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) DOI: 10.7176/MTM 

Vol.9, No.6, 2019 

 

30 

 

Table 1. Model Variables 

Variables Description 

( )AS t  The number of susceptible individuals in patch A with time 

(t)AI  The number of HIV infectives in patch A with time 

( )AD t  The number of individuals with full blown AIDS in patch A at time t 

( )BS t  The number of susceptible individuals in patch B at time t 

( )BI t  The number of HIV infectives in patch B at time t 

( )BD t  The number of individuals with full blown AIDS in patch B at time t 

Table 2. Model parameters 

Parameters  Description 

𝛽1 The infection rate of patch A 

𝛽2 The infection rate of patch B 

𝜆1 Force of infection of patch A 

𝜆2 Force of infection of patch B 

  Progression rate from HIV to AIDS stage 

  AIDS induced-death rate  

m  the specific rate of migration of truck drivers between the patches 

  the concentration of resource availability for migration   

zk  the half-velocity constant 

maxm  The maximum specific migration rate of truck drivers 

2.3. Model structure 

 

Figure 1. A Two-Patch SI Compartmental Structure 
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The following systems of non-linear ordinary differential equations are deduced from Figure 1: 

𝒅𝑺𝑨

𝒅𝒕
= 𝒎(𝑺𝑩 − 𝑺𝑨) − 𝝀𝟏𝑺𝑨                            

𝒅𝑰𝑨

𝒅𝒕
= 𝒎(𝑰𝑩 − 𝑰𝑨) + 𝝀𝟏𝑺𝑨  − 𝜸𝑰𝑨,               

𝒅𝑫𝑨

𝒅𝒕
= 𝒎(𝑫𝑩 − 𝑫𝑨) + 𝜸𝑰𝑨 − 𝜹𝑫𝑨 ,               

𝒅𝑺𝑩

𝒅𝒕
= 𝒎(𝑺𝑨 − 𝑺𝑩) − 𝝀𝟐𝑺𝑩 ,                          

𝒅𝑰𝑩

𝒅𝒕
= 𝒎(𝑰𝑨 − 𝑰𝑩) + 𝝀𝟐𝑺𝑩 − 𝜸𝑰𝑩,                

𝒅𝑫𝑩

𝒅𝒕
= 𝒎(𝑫𝑨 − 𝑫𝑩) + 𝜸𝑰𝑩 − 𝜹𝑫𝑩                  }

 
 
 
 

 
 
 
 

                                     ( 1) 

where  

𝜆1 = 𝛽1(𝐼𝐴 + 𝜂1𝐷𝐴)

𝜆2 = 𝛽2(𝐼𝐵 + 𝜂2𝐷𝐵)

0 ≤ 𝜂1 < 0.5
 0 ≤ 𝜂2 < 0.5

𝑚 = 𝑚𝑚𝑎𝑥
𝑍

𝑘𝑍+𝑍 }
 
 

 
 

          (2) 

The total population size of the patches at time t is given by; 

 𝑵(𝒕) = 𝑵𝑨(𝒕) + 𝑵𝑩(𝒕) = 𝑺𝑨(𝒕) + 𝑰𝑨(𝒕) + 𝑫𝑨(𝒕) + 𝑺𝑩(𝒕) + 𝑰𝑩(𝒕) + 𝑫𝑩(𝒕)           (3) 

with the initial conditions 𝑆𝐴(0) > 0, 𝐼𝐴(0) > 0, 𝐷𝐴(0) > 0, 𝑆𝐵(0) > 0, 𝐼𝐵(0) > 0 𝑎𝑛𝑑 𝐷𝐵 > 0. 

Thus A A A B B BdS dI dD dS dI dDdN

dt dt dt dt dt dt dt
= + + + + +       (4) 

𝒅𝑵

𝒅𝒕
=

𝒅𝑵𝑨

𝒅𝒕
+

𝒅𝑵𝑩

𝒅𝒕
            (5) 

(D D )A B

dN

dt
= − +

          (6)

  

3. Model analysis 

The positivity and boundedness of the solutions, DFEP and EEP, basic reproduction number of the patches, and 

the combined reproduction number are determined as follows; 

3.1. Positivity and Boundedness of the solutions 

Theorem:   

The solutions SA(t), SB(t), IA(t), IB(t), DA(t)and DB(t) are non-negative for all t > 0 and lim
𝑡→∞

𝑁(𝑡) = 𝑁(0) 

Proof: Let SA(t), SB(t), IA(t), IB(t), DA(t) and DB(t) be the solutions of the system (1) with non-negative initial 

conditions 𝑆𝐴(0) ≥ 0, 𝐼𝐴(0) ≥ 0, 𝐷𝐴(0) ≥ 0, 𝑆𝐵(0) ≥ 0, 𝐼𝐵(0) ≥ 0 𝑎𝑛𝑑 𝐷𝐵 ≥ 0 

Since 
𝑑𝑆𝐴

𝑑𝑡
= −𝜆1𝑆𝐴 +𝑚𝑚𝑎𝑥

𝑠

𝑘𝑠+𝑠
(𝑆𝐵 − 𝑆𝐴), it follows directly from the first equation of the system (1a) and only 

taking the negative part that 1
A

A

dS
S

dt
 −

.Hence 𝑆𝐴(𝑡) = 𝐶2ℯ
−∫ 𝜆1(𝑠)𝑑𝑠

𝑡
0     (7) 
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the integral of any negative exponential function is real and positive. Applying the initial conditions 𝑡 = 0 it 

follows from (7) that 𝑆𝐴(𝑡) = 𝑆0ℯ
−∫ 𝜆1(𝑠)𝑑𝑠

𝑡
0 ≥ 0, so 𝑆0ℯ

−∫ 𝜆1(𝑠)𝑑𝑠
𝑡
0  is a non-negative function of t, thus 𝑆𝐴(𝑡)stays 

positive. By integration, the positivity of SB(t), IA(t), IB(t), DA(t) and DB(t) are proved similarly along the same 

lines. From equation (1b) to (1c), it can be shown that: 

𝐼𝐴(𝑡) ≥ 𝐶3ℯ
−𝛾𝑡 ≥ 0,𝐷𝐴(𝑡) ≥ 𝐶4ℯ

−𝛿𝑡 ≥ 0;  
2

0
( )

5 0

t

s ds

BS C e
−=   , 6 0t

BI C e −=   and 

 7 0t

BD C e −=               (8) 

Similarly, From (6) ( )A B

dN
D D

dt
 − +  and on integrating we have ( )

0

( ) (s) ( )

t

A BN t D D s ds − +

Thus, 𝑁(𝑡) = 𝐶 + 𝑘ℯ−𝛿𝑡 + ℎℯ−𝛿𝑡 and inserting the initial condition 𝑡 = 0, 𝑁(0) = 𝐶 + 𝑘 + ℎ = 𝑁0. Hence 

lim
𝑡→∞

𝑁(𝑡) = 𝑁(0). 

3.2. Disease Free -Equilibrium Point (DFEP) 

We determine the DFEP of the system (1).  Supposing that the communities in the patches has not experienced 

HIV infection, then it is expected to remain free of HIV-infection. This implies that the entire community is 

rendered susceptible to the infection. In this respect, we set the system (1) to zero and there being no infectious 

individuals, 𝐼𝐴
0 = 𝐷𝐴

0 = 𝐼𝐵
0 = 𝐷𝐵

0 = 0.  From the resulting equations, we obtain 1 2 0 = = , and 𝑆𝐴
0 = 𝑆𝐵

0 

implying that the number of susceptible individuals in both patches is constant. Therefore, the system (1) has a 

disease-free equilibrium point, denoted as 𝐸0 = (𝑆𝐴
0, 𝐼𝐴

0, 𝐷𝐴
0, 𝑆𝐵

0, 𝐼𝐵
0, 𝐷𝐵

0) = {𝑁𝐴(0),0,0, 𝑁𝐵(0),0,0}   

   (9) 

3.3. Basic reproduction number,  𝑹𝒐;   

 𝑅𝑜 is defined as the number of secondary infections that would occur when a single infectious individual is 

introduced into an entirely susceptible population, and considered over the lifetime of an episode of the disease 

(Van den Driessche 2017). It was determined as the spectral radius of the Next Generation Matrix Method (𝐹𝑉−1). 

3.3.1. Basic reproduction number for patch A 

We obtain the Matrix of new infections as:  𝑓𝐴 = [
𝛽1𝑆𝐴(𝐼𝐴 + 𝜂1𝐷𝐴)

0
]      (10) 

and matrix of transfer as: 

 𝑣𝐴 = [
𝛾𝐼𝐴 −𝑚(𝐼𝐵 − 𝐼𝐴)

−𝛾𝐼𝐴 + 𝛿𝐷𝐴 −𝑚(𝐷𝐵 − 𝐷𝐴)
]        (11) 

The corresponding Jacobian matrix of (9) and (10) are: 

𝐹𝐴 = [
𝛽1𝑆𝐴 𝛽1𝜂1𝑆𝐴
0 0

]           (12) 

𝑉𝐴
−1
=
{{

1

𝑚+𝛾
, 0}, {

𝛾

(𝑚+𝛾)(𝑚+𝛿)
,

1

𝑚+𝛿
}}          (13) 

The Eigen values of the matrix 𝐹𝐴𝑉𝐴
−1at Disease-Free Equilibrium Point are: 

{0,
S𝐴
𝑂𝛽1(𝑚+𝛿+𝛾𝜂1)

(𝑚+𝛾)(𝑚+𝛿)
}           (14) 

Thus, the basic reproduction number for patch A was obtained as the spectral radius of 𝐹𝐴𝑉𝐴
−1 

𝑅𝑂
𝐴 =

S𝐴
𝑂𝛽1(𝑚+𝛿+𝛾𝜂1)

(𝑚+𝛾)(𝑚+𝛿)
           (15) 
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3.3.2. Basic reproduction number for patch B 

Similarly, we determine the matrix of new infections as: 𝑓𝐵 = [
𝛽2𝑆𝐵(𝐼𝐵 + 𝜂2𝐷𝐵)

0
]    (16) 

and 𝑣𝐵 = [
𝛾𝐼𝐵 −𝑚(𝐼𝐴 − 𝐼𝐵)

−𝛾𝐼𝐵 + 𝛿𝐷𝐴 −𝑚(𝐷𝐴 − 𝐷𝐵)
]         (17) 

The corresponding Jacobian matrix of (16) and (17) for patch B are: 

𝐹𝐵 = [
𝛽2𝑆𝐵 𝛽2𝜂2𝑆𝐵
0 0

]           (18) 

𝑉𝐵
−1{{

1

𝑚+𝛾
, 0}, {

𝛾

(𝑚+𝛾)(𝑚+𝛿)
,

1

𝑚+𝛿
}}          (19) 

The Eigen values of the Jacobian matrix 𝐹𝐵𝑉𝐵
−1at Disease-Free Equilibrium Point were obtained as:  

{0,
S𝐵
𝑂𝛽2(𝑚+𝛿+𝛾𝜂2)

(𝑚+𝛾)(𝑚+𝛿)
}           (20) 

Thus, the basic reproduction number for patch B is obtained as the spectral radius of 𝐹𝐵𝑉𝐵
−1 

𝑅𝑂
𝐵 =

S𝐵
𝑂𝛽1(𝑚+𝛿+𝛾𝜂2)

(𝑚+𝛾)(𝑚+𝛿)
           (21) 

3.3.3. The combined basic reproduction number for both patches 

We consider the Jacobian matrix 𝐹𝐴𝐵 for the entire system and the inverse of the Jacobian matrix as follows  

𝑉𝐴𝐵
−1 = {{

𝑚+𝛾

2𝑚𝛾+𝛾2
, 0,

𝑚

2𝑚𝛾+𝛾2
, 0}, {

1

2𝛿
,
1

2𝛿
,
1

2𝛿
,
1

2𝛿
}, {

𝑚

2𝑚𝛾+𝛾2
, 0,

𝑚+𝛾

2𝑚𝛾+𝛾2
, 0}, {

1

2
(−

𝛾

𝑚(2𝑚+𝛾)
+

1

𝛿
),
1

2
(−

1

𝑚
+

1

𝛿
),
1

2
(

𝛾

𝑚(2𝑚+𝛾)
+

1

𝛿
),
𝑚+𝛿

2𝑚𝛿
}}           

 (22) 

𝐹𝐴𝐵𝑉𝐴𝐵
−1 = {{

(𝑚+𝛾)𝑆𝐴𝛽1

2𝑚𝛾+𝛾2
+

𝑆𝐴𝛽1𝜂1

2𝛿
,
𝑆𝐴𝛽1𝜂1

2𝛿
,
𝑚𝑆𝐴𝛽1

2𝑚𝛾+𝛾2
+

𝑆𝐴𝛽1𝜂1

2𝛿
,
𝑆𝐴𝛽1𝜂1

2𝛿
}, {0,0,0,0}, {

𝑚𝑆𝐵𝛽2

2𝑚𝛾+𝛾2
+

1

2
(−

𝛾

𝑚(2𝑚+𝛾)
+

1

𝛿
)𝑆𝐵𝛽2𝜂2,

1

2
(−

1

𝑚
+

1

𝛿
)𝑆𝐵𝛽2𝜂2,

(𝑚+𝛾)𝑆𝐵𝛽2

2𝑚𝛾+𝛾2
+

1

2
(

𝛾

𝑚(2𝑚+𝛾)
+

1

𝛿
)𝑆𝐵𝛽2𝜂2,

(𝑚+𝛿)𝑆𝐵𝛽2𝜂2

2𝑚𝛿
}, {0,0,0,0}}   (23) 

At Disease-Free Equilibrium Point, the matrix 𝐹𝑉−1 becomes: 

{{
(𝑚+𝛾)S𝐴

𝑜𝛽1

2𝑚𝛾+𝛾2
+

S𝐴
0𝛽1𝜂1

2𝛿
,
S𝐴
0𝛽1𝜂1

2𝛿
,
𝑚S𝐴

0𝛽1

2𝑚𝛾+𝛾2
+

S𝐴
0𝛽1𝜂1

2𝛿
,
S𝐴
0𝛽1𝜂1

2𝛿
}, {0,0,0,0}, {

𝑚S𝐵
0𝛽2

2𝑚𝛾+𝛾2
+

1

2
(−

𝛾

𝑚(2𝑚+𝛾)
+

1

𝛿
)S𝐵
0𝛽2𝜂2,

1

2
(−

1

𝑚
+

1

𝛿
)S𝐵
0𝛽2𝜂2,

(𝑚+𝛾)S𝐵
0𝛽2

2𝑚𝛾+𝛾2
+

1

2
(

𝛾

𝑚(2𝑚+𝛾)
+

1

𝛿
)S𝐵
0𝛽2𝜂2,

(𝑚+𝛿)S𝐵
0𝛽2𝜂2

2𝑚𝛿
}, {0,0,0,0}}      (24) 

The Eigen values of 𝐹𝑉−1 is obtained as: 

{0,0,
1

4𝑚𝛾(2𝑚+𝛾)𝛿
(𝛾2𝛿S𝐵

0𝛽2𝜂2 + 2𝑚
2(S𝐴

𝑜𝛽1(𝛿 + 𝛾𝜂1) + S𝐵
0𝛽2(𝛿 + 𝛾𝜂2)) + 𝑚𝛾(S𝐴

𝑜𝛽1(2𝛿 + 𝛾𝜂1) + S𝐵
0𝛽2(2𝛿 +

𝛾𝜂2)) − √(−8𝑚𝛾(2𝑚 + 𝛾)𝛿S𝐴
𝑜S𝐵

0𝛽1𝛽2(2𝑚𝛿 + 𝑚𝛾𝜂1 + 𝛾(𝑚 + 𝛿 + 𝛾𝜂1)𝜂2) + (𝑚S𝐴
𝑜𝛽1(2(𝑚 + 𝛾)𝛿 + 𝛾(2𝑚 +

𝛾)𝜂1) + S𝐵
0𝛽2(2𝑚(𝑚 + 𝛾)𝛿 + 𝛾(𝑚(2𝑚 + 𝛾) + 𝛾𝛿)𝜂2))

2)),
1

4𝑚𝛾(2𝑚+𝛾)𝛿
(𝛾2𝛿S𝐵

0𝛽2𝜂2 + 2𝑚
2(S𝐴

𝑜𝛽1(𝛿 + 𝛾𝜂1) +

S𝐵
0𝛽2(𝛿 + 𝛾𝜂2)) + 𝑚𝛾(S𝐴

𝑜𝛽1(2𝛿 + 𝛾𝜂1) + S𝐵
0𝛽2(2𝛿 + 𝛾𝜂2)) + √(−8𝑚𝛾(2𝑚 + 𝛾)𝛿S𝐴

𝑜S𝐵
0𝛽1𝛽2(2𝑚𝛿 + 𝑚𝛾𝜂1 +

𝛾(𝑚 + 𝛿 + 𝛾𝜂1)𝜂2) + (𝑚S𝐴
𝑜𝛽1(2(𝑚 + 𝛾)𝛿 + 𝛾(2𝑚 + 𝛾)𝜂1) + S𝐵

0𝛽2(2𝑚(𝑚 + 𝛾)𝛿 + 𝛾(𝑚(2𝑚 + 𝛾) +
𝛾𝛿)𝜂2))

2))}           (25) 

Using the NGM the basic reproduction number is obtained as the spectral radius of 𝐹𝑉−1 which is: 

 𝑅𝑜
𝐴𝐵 =

1

4𝑚𝛾(2𝑚+𝛾)𝛿
(𝛾2𝛿S𝐵

0𝛽2𝜂2 + 2𝑚
2(S𝐴

𝑜𝛽1(𝛿 + 𝛾𝜂1) + S𝐵
0𝛽2(𝛿 + 𝛾𝜂2)) + 𝑚𝛾(S𝐴

𝑜𝛽1(2𝛿 + 𝛾𝜂1) +

S𝐵
0𝛽2(2𝛿 + 𝛾𝜂2)) + √(−8𝑚𝛾(2𝑚 + 𝛾)𝛿S𝐴

𝑜S𝐵
0𝛽1𝛽2(2𝑚𝛿 +𝑚𝛾𝜂1 + 𝛾(𝑚 + 𝛿 + 𝛾𝜂1)𝜂2) + (𝑚S𝐴

𝑜𝛽1(2(𝑚 +
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𝛾)𝛿 + 𝛾(2𝑚 + 𝛾)𝜂1) + S𝐵
0𝛽2(2𝑚(𝑚 + 𝛾)𝛿 + 𝛾(𝑚(2𝑚 + 𝛾) + 𝛾𝛿)𝜂2))

2))    (26)

  

From equation (15), (21) and (26), a value of 𝑅0
𝐴 <  1 implies that each individual is only able to infect less than 

one individual on average, so that the infection will die out. A value of 𝑅0
𝐴 >  1 implies that each individual is able 

to infect more than one individual on average and the infection is expected to persist in the population. Hence, 

𝑅0
𝐴 =  1 is a crucial epidemic threshold. 

3.4. Existence of Endemic Equilibrium Point (EEP) 

 Anderson and May (1991), proposed the following property of epidemic models 

Property: The disease always dies out and therefore epidemic models don’t possess an endemic equilibrium state. 

Proof:  

We considered a single patch A and special case in our system where 𝑚 = 0.The basic reproduction number for 

patch A in (15) becomes 𝑅𝑂
𝐴∗ =

S𝐴
𝑂𝛽1(𝛿+𝛾𝜂1)

𝛾𝛿
 and our system of equations (1) reduces to:  

𝑑𝑆𝐴

𝑑𝑡
= −𝛽1𝑆𝐴(𝐼𝐴 + 𝜂1𝐷𝐴)

𝑑𝐼𝐴

𝑑𝑡
= 𝛽1𝑆𝐴(𝐼𝐴 + 𝜂1𝐷𝐴)  − 𝛾𝐼𝐴

𝑑𝐷𝐴

𝑑𝑡
= 𝛾𝐼𝐴 − 𝛿𝐷𝐴 }

 
 

 
 

          (27) 

Solving for 𝑆𝐴
∗, 𝐼𝐴

∗, 𝐷𝐴
∗ at endemic state and equating the system of equations (27) to zero and from (27c) we have  

𝛾𝐼𝐴
∗ = 𝛿𝐷𝐴

∗ ,which yields 𝐷𝐴
∗ =

𝛾

𝛿
𝐼𝐴
∗, substituting 𝐷𝐴

∗ into 𝛽1𝑆𝐴
∗(𝐼𝐴

∗ + 𝜂1𝐷𝐴
∗ )  − 𝛾𝐼𝐴

∗ = 0 we obtain 

 𝛽1𝑆𝐴
∗ (𝐼𝐴

∗ + 𝜂1
𝛾

𝛿
𝐼𝐴
∗ )  − 𝛾𝐼𝐴

∗ = 0, factoring 𝐼𝐴
∗, we obtain 𝐼𝐴

∗  {𝛽1𝑆𝐴
∗ (1 + 𝜂1

𝛾

𝛿
 ) − 𝛾} = 0.This implies that 𝐼𝐴

∗ = 0 

and so 𝐷𝐴
∗ = 0 . Similarly, 𝛽1𝑆𝐴

∗ (1 + 𝜂1
𝛾

𝛿
 ) − 𝛾 = 0, giving 

 𝑆𝐴
∗ =

𝛾

𝛽1(1+𝜂1
𝛾

𝛿
 )
=

𝑆𝐴
0

𝑅𝐴
0            (28) 

From the above prove it can be concluded that the infection will die out if  𝐼𝐴
∗ = 0 and 𝐷𝐴

∗ = 0 and that the system 

does not display an endemic state. This completed the proof of the property proposed by Anderson and May. 

In addition, Anderson and May also proposed the theorem for epidemic models as stated below 

Theorem 1. 

(i) If  𝑅𝑂
𝐴𝐵 < 1 the infectious classes decrease with time monotonically to zero as 𝑡 → ∞ (at exponential 

rate). 

(ii) If 𝑅𝑂
𝐴𝐵 > 1,then the infectious class starts increasing with time, reaches its maximum, and then 

decreases to zero as 𝑡 → ∞. 

(iii) If 𝑅𝑂
𝐴𝐵 = 1, then the infectious classes decrease to zero with time as 𝑡 → ∞. 

Proof (i) 

We considered a single patch A and special case in our system where 𝑚 = 0.The reproduction number for patch 

A becomes 𝑅𝑂
𝐴∗ =

S𝐴
𝑂𝛽1(𝛿+𝛾𝜂1)

𝛾𝛿
 and the system of equations (1) reduces to: 

𝑑𝑆𝐴

𝑑𝑡
= −𝛽1𝑆𝐴(𝐼𝐴 + 𝜂1𝐷𝐴)

𝑑𝐼𝐴

𝑑𝑡
= 𝛽1𝑆𝐴(𝐼𝐴 + 𝜂1𝐷𝐴)  − 𝛾𝐼𝐴

𝑑𝐷𝐴

𝑑𝑡
= 𝛾𝐼𝐴 − 𝛿𝐷𝐴 }

 
 

 
 

          (29) 
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Substituting 𝐷𝐴
∗ at endemic equilibrium state into  

𝑑𝐼𝐴

𝑑𝑡
 we obtain 

𝑑𝐼𝐴
∗

𝑑𝑡
= 𝛽1𝑠𝐴

∗ (𝐼𝐴
∗ + 𝜂1

𝛾

𝛿
𝐼𝐴
∗)  − 𝛾𝐼𝐴

∗  (30) 

Thus, 𝛽1𝑠𝐴
∗ (𝐼𝐴

∗ + 𝜂1
𝛾

𝛿
𝐼𝐴
∗)  − 𝛾𝐼𝐴

∗ ≤ 𝐼𝐴
∗ {𝛽1𝑠𝐴

0 (1 + 𝜂1
𝛾

𝛿
) − 𝛾}. We determine the condition necessary and sufficient 

for 𝐼𝐴
∗ {𝛽1𝑠𝐴

0 (1 + 𝜂1
𝛾

𝛿
) − 𝛾} < 0, this implies that 𝐼𝐴

∗𝛾 {
S𝐴
𝑂𝛽1(𝛿+𝛾𝜂1)

𝛾𝛿
− 1} < 0. Since 𝐼𝐴

∗𝛾 cannot be less than zero, 

therefore 
S𝐴
𝑂𝛽1(𝛿+𝛾𝜂1)

𝛾𝛿
− 1 < 0 which implies 𝑅𝑂

𝐴∗ < 1 which completed the prove. Similarly, the same condition 

can be applied to patch B and the entire system, that is 𝑅𝑂
𝐵∗ < 1 and 𝑅𝑂

𝐴𝐵 < 1 respectively. 

For proof (ii) and (iii), the same procedure in (i) is applied but the conditions are  
S𝐴
𝑂𝛽1(𝛿+𝛾𝜂1)

𝛾𝛿
− 1 > 0 and 

S𝐴
𝑂𝛽1(𝛿+𝛾𝜂1)

𝛾𝛿
− 1 = 0 respectively. This showed that the conditions necessary and sufficient are as outlined in the 

theorem as 𝑅𝑂
𝐴 > 1 and 𝑅𝑂

𝐴 = 1, and so the entire system, that is 𝑅𝑂
𝐴𝐵 > 1 𝑎𝑛𝑑 𝑅𝑂

𝐴𝐵 = 1.  

3.5. Stability analysis of DFEP 

The local and global stability of the disease-free equilibrium point was analyzed based on the following theorems. 

Theorem 2: The DFEP is locally asymptotically stable whenever 𝑅𝑂
𝐴 < 1 and unstable otherwise. 

Proof: 

We considered patch A, with the following systems of equations  

𝑑𝑆𝐴

𝑑𝑡
= 𝑚(𝑆𝐵 − 𝑆𝐴) − 𝛽1𝑆𝐴(𝐼𝐴 + 𝜂1𝐷𝐴)  

𝑑𝐼𝐴

𝑑𝑡
= 𝑚(𝐼𝐵 − 𝐼𝐴) + 𝜆1𝑆𝐴  − 𝛾𝐼𝐴           

𝑑𝐷𝐴

𝑑𝑡
= 𝑚(𝐷𝐵 − 𝐷𝐴) + 𝛾𝐼𝐴 − 𝛿𝐷𝐴           }

 
 

 
 

            (31) 

The local stability of patch A is determined by the signs of the Eigen values of the Jacobean matrix at DFEP. When 

all the Eigenvalues are negative the DFEP is locally asymptotically stable and unstable otherwise. Determining the 

Jacobean matrix of the system of equations (5) at DFEP, we obtain: 

(

−𝑚 −𝛽1𝑆𝐴
0 −𝛽1𝜂1𝑆𝐴

0

0 𝛽1𝑆𝐴
0 − 𝛾 −𝑚 𝛽1𝜂1𝑆𝐴

0

0 𝛾 −𝛿 − 𝑚

)         (32) 

The eigenvalues of the above matrix are: 

{

−𝑚,                                                                                                                                                         
1

2
(−2𝑚 − 𝛾 − 𝛿 + 𝑆𝐴𝛽1 − √𝛾

2 − 2𝛾𝛿 + 𝛿2 − 2𝛾𝑆𝐴𝛽1 + 2𝛿𝑆𝐴𝛽1 + 𝑆𝐴
2𝛽1

2 + 4𝛾𝑆𝐴𝛽1𝜂1) ,

1

2
(−2𝑚 − 𝛾 − 𝛿 + 𝑆𝐴𝛽1 +√𝛾

2 − 2𝛾𝛿 + 𝛿2 − 2𝛾𝑆𝐴𝛽1 + 2𝛿𝑆𝐴𝛽1 + 𝑆𝐴
2𝛽1

2 + 4𝛾𝑆𝐴𝛽1𝜂1)

}   (33) 

It’s evident from (33) that the first two eigenvalues are negative. We want to establish the necessary and 

sufficient condition for  
1

2
(−2𝑚 − 𝛾 − 𝛿 + 𝑆𝐴𝛽1 + √𝛾

2 − 2𝛾𝛿 + 𝛿2 − 2𝛾𝑆𝐴𝛽1 + 2𝛿𝑆𝐴𝛽1 + 𝑆𝐴
2𝛽1

2 + 4𝛾𝑆𝐴𝛽1𝜂1) 

to be negative. 

Proof: We let 𝑚 = 0, then 𝑅𝑂
𝐴∗ =

S𝐴
𝑂𝛽1(𝛿+𝛾𝜂1)

𝛾𝛿
.  

1

2
(−𝛾 − 𝛿 + 𝑆𝐴𝛽1 + √𝛾

2 − 2𝛾𝛿 + 𝛿2 − 2𝛾𝑆𝐴𝛽1 + 2𝛿𝑆𝐴𝛽1 + 𝑆𝐴
2𝛽1

2 + 4𝛾𝑆𝐴𝛽1𝜂1) < 0  

(𝛾 + 𝛿 − 𝑆𝐴𝛽1) > √𝛾
2 − 2𝛾𝛿 + 𝛿2 − 2𝛾𝑆𝐴𝛽1 + 2𝛿𝑆𝐴𝛽1 + 𝑆𝐴

2𝛽1
2 + 4𝛾𝑆𝐴𝛽1𝜂1  

(𝛾 + 𝛿 − 𝑆𝐴𝛽1)
2 > 𝛾2 − 2𝛾𝛿 + 𝛿2 − 2𝛾𝑆𝐴𝛽1 + 2𝛿𝑆𝐴𝛽1 + 𝑆𝐴

2𝛽1
2 + 4𝛾𝑆𝐴𝛽1𝜂1  

𝛾𝛿 {1 −
𝑆𝐴𝛽1(𝛿+𝛾𝜂1)

𝛾𝛿
}  > 0 that is 𝛾𝛿{1 − 𝑅𝑂

𝐴∗}  > 0 since 𝛾𝛿 > 0, then 1 − 𝑅𝑂
𝐴∗ > 0, hence 𝑅𝑂

𝐴∗ < 1.   
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This completed the proof. The same theorem can also be proved for patch B as 𝑅𝑂
𝐵 < 1 and entire system as 𝑅𝑂

𝐴𝐵 <
1. 

Theorem 3: The Disease-Free Equilibrium Point is globally asymptotically stable in Lyapunov sense whenever 

R0
𝐴𝐵 < 1 and unstable otherwise. 

Proof: We considered a special case where 𝑚 = 0 of the model in patch A and to proof R0
𝐴𝐵 < 1 , we proposed a 

logarithmic Lyapunov function given as: 

𝐿(𝑆𝐴, 𝐼𝐴, 𝐷𝐴) = 𝑆𝐴 − 𝑆𝐴
0 − 𝑆𝐴

0𝑙𝑛
𝑆𝐴

𝑆𝐴
0 + 𝑥1𝐼𝐴 + 𝑥2𝐷𝐴       (34) 

where 𝑥1 and 𝑥2  are non-negative Lyapunov constants. A well-posed Lyapunov function, 𝐿 Satisfies the following 

conditions to ascertain global asymptotic stability: 

i) 𝐿(𝑆𝐴
0, 𝐼𝐴

0, 𝐷𝐴
0) = 0 and 𝐿(𝑆𝐴, 𝐼𝐴, 𝐷𝐴) > 0,  ∀𝑆𝐴, 𝐼𝐴, 𝐷𝐴 ≠ 0     (35) 

ii) 
𝑑𝐿(𝑆𝐴

0 ,𝐼𝐴
0 ,𝐷𝐴

0)

𝑑𝑡
= 0 and 

𝑑𝐿(𝑆𝐴,𝐼𝐴,𝐷𝐴)

𝑑𝑡
< 0         

Explicitly in (35i) above, 𝐿(𝑆𝐴
0, 𝐼𝐴

0, 𝐷𝐴
0) = 𝑆𝐴

0 − 𝑆𝐴
0 − 𝑆𝐴

0𝑙𝑛
𝑆𝐴
0

𝑆𝐴
0 + 𝑥1𝐼𝐴

0 + 𝑥2𝐷𝐴
0 = 0 since 𝐷𝐴

0 = 𝐼𝐴
0 = 0 𝑎𝑛𝑑 𝑙𝑛1 =

0 in the same sense 𝑆𝐴 ≠ 𝑆𝐴
0, 𝐼𝐴 ≠ 0, 𝐷𝐴 ≠ 0 𝑎𝑛𝑑 𝑙𝑛

𝑆𝐴

𝑆𝐴
0 ≠ 0 hence 𝐿(𝑆𝐴, 𝐼𝐴, 𝐷𝐴) > 0.  

In (ii) 
𝑑𝐿(𝑆𝐴

0 ,𝐼𝐴
0 ,𝐷𝐴

0)

𝑑𝑡
= (1 −

𝑆𝐴
0

𝑆𝐴
0)

𝑑𝑆𝐴
0

𝑑𝑡
+ 𝑥1

𝑑𝐼𝐴
0

𝑑𝑡
+ 𝑥2

𝑑𝐷𝐴
0

𝑑𝑡
= 0 since 𝐷𝐴

0 = 𝐼𝐴
0 = 0 𝑎𝑛𝑑 1 −

𝑆𝐴
0

𝑆𝐴
0 = 0. To conclude that the 

system is globally asymptotically stable, we are only left to prove that 
𝑑𝐿(𝑆𝐴,𝐼𝐴,𝐷𝐴)

𝑑𝑡
< 0 

The time derivative of the Lyapunov function in (34) is given as: 

𝑑𝐿(𝑆𝐴,𝐼𝐴,𝐷𝐴)

𝑑𝑡
= (1 −

𝑆𝐴
0

𝑆𝐴
)
𝑑𝑆𝐴

𝑑𝑡
+ 𝑥1

𝑑𝐼𝐴

𝑑𝑡
+ 𝑥2

𝑑𝐷𝐴

𝑑𝑡
         (36) 

Substituting for 
𝑑𝑆𝐴

𝑑𝑡
,
𝑑𝐼𝐴

𝑑𝑡
 𝑎𝑛𝑑 

𝑑𝐷𝐴

𝑑𝑡
 into (36) we have: 

𝑑𝐿(𝑆𝐴,𝐼𝐴,𝐷𝐴)

𝑑𝑡
= (1 −

𝑆𝐴
0

𝑆𝐴
) {−𝛽1𝑆𝐴(𝐼𝐴 + 𝜂1𝐷𝐴)} + 𝑥1{𝛽1𝑆𝐴(𝐼𝐴 + 𝜂1𝐷𝐴) − 𝛾𝐼𝐴} + 𝑥2{𝛾𝐼𝐴 − 𝛿𝐷𝐴}    (37) 

𝑑𝐿(𝑆𝐴,𝐼𝐴,𝐷𝐴)

𝑑𝑡
= 𝑆𝐴𝐼𝐴(−𝛽1 + 𝑥1𝛽1) + 𝑆𝐴𝐷𝐴(−𝛽1𝜂1 + 𝑥1𝛽1𝜂1) + 𝐼𝐴(𝑆𝐴

0𝛽1 − 𝑥1𝛾 + 𝑥2𝛾) + 𝐷𝐴(𝑆𝐴
0𝛽1𝜂1 − 𝑥2𝛿)  

Setting 𝑆𝐴𝐼𝐴 and 𝐷𝐴 to zero yields, −𝛽1 + 𝑥1𝛽1 = 0 and 𝑆𝐴
0𝛽1𝜂1 − 𝑥2𝛿 = 0 . Solving the equations, we obtain 

𝑥1 = 1 and 𝑥2 =
𝑆𝐴
0𝛽1𝜂1

𝛿
. Replacing for 𝑥1 and 𝑥2 in 

𝑑𝐿(𝑆𝐴,𝐼𝐴,𝐷𝐴)

𝑑𝑡
  we obtain:  

𝑑𝐿(𝑆𝐴,𝐼𝐴,𝐷𝐴)

𝑑𝑡
= 𝐼𝐴 (𝑆𝐴

0𝛽1 − 𝛾 + 𝛾
𝑆𝐴
0𝛽1𝜂1

𝛿
) = 𝐼𝐴𝛾 {

S𝐴
𝑂𝛽1(𝛿+𝛾𝜂1)

𝛾𝛿
− 1} = 𝐼𝐴𝛾(R0

𝐴∗ − 1)    (38) 

The necessary and sufficient condition for 
𝑑𝐿(𝑆𝐴,𝐼𝐴,𝐷𝐴)

𝑑𝑡
< 0  is 𝐼𝐴𝛾(R0

𝐴∗ − 1) < 0 which implies that R0
𝐴∗ < 1 since 

𝐼𝐴𝛾 ≠ 0. The same condition can also be demonstrated in patch B and the entire system and so the necessary and 

sufficient condition for globally asymptotically stable of the entire system is R0
𝐴𝐵 < 1. This completed the proof. 

4. Results and discussions 

We considered the migrations between two major cities in Kenya; Nairobi and Mombasa. In the model 𝑁𝐴 and 𝑁𝐵 

represents the total population for Mombasa and Nairobi respectively, whose data was obtained from Kenya 

National Bureau of Stastitics 2015 as tabulated below. According to Business daily 2019, 3000 truck drivers enters 

and leaves Mombasa daily. Model variables and parameter values are obtained from the available relevant 

literature on HIV epidemic models.  A summary of the model variables, parameters and their respective values 

and sources are shown in Table 3. 
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Table 3. Initial Conditions 

Parameter Value Source Initial 

conditions 

Value Source 

𝛽1  0.002397/year Kenya HIV 

county profiles 

2016 

𝑁𝐴  1,145,259 KNBS 

population 

projection 

(2015) 

𝛽2  0.001177/year Kenya HIV 

county profiles 

2016 

𝑁𝐵  4,232,087 KNBS 

population 

projection 

(2015) 

𝛾  0.125/year Baryarama F, 

Mugisha JYT, 

Luboobi LS., 

(2006) 

(0)AS  1059365 KNBS 

population 

projection 

(2015) 

𝑚  0.0007089 to 

0.01048/day  

(Business daily, 

2019) 
(0)BS  3965466 KNBS 

population 

projection 

(2015) 

 𝛿 0.004326 Kenya HIV 

county profiles 

2016 

(0)AI  54670 Kenya HIV 

estimates 

,2015 

(0)BI  177552 Kenya HIV 

estimates 2015 
(0)AD  31224 Kenya HIV 

estimates 

2015 

(0)BD  80,605 Kenya HIV 

estimates (2015) 

   

4.1. Numerical values for model reproduction numbers 

On substituting the initial conditions and parameters into (15), (21) and (26), the total secondary infections for 

Mombasa, Nairobi and combined populations were obtained as: 

𝑅𝑂
𝑀𝑜𝑚𝑏𝑎𝑠𝑎 = 16993.69466724191 , 𝑅𝑂

𝑁𝑎𝑖𝑟𝑜𝑏𝑖 = 8383.60474035797 , 𝑅𝑂
𝑀𝑜𝑚𝑏𝑎𝑠𝑎−𝑁𝑎𝑖𝑟𝑜𝑏𝑖 =

70614.8740035696 

From these results it is observed that 𝑅𝑂
𝑀𝑜𝑚𝑏𝑎𝑠𝑎−𝑁𝑎𝑖𝑟𝑜𝑏𝑖 > 𝑅𝑂

𝑀𝑜𝑚𝑏𝑎𝑠𝑎 > 𝑅𝑂
𝑁𝑎𝑖𝑟𝑜𝑏𝑖 , implying that the migration 

between Mombasa and Nairobi contributes more to the spread of HIV infection. Despite the fact that Mombasa 

has a lower population than Nairobi, the rate of spread of HIV infection in Mombasa is more than that of Nairobi. 

Thus, Nairobi has a higher infection rate than Mombasa. 

4.2. Normalized sensitivity analysis of basic reproduction numbers 

The normalized forward sensitivity index of a variable,∅ that depends differentiability on a parameter,�̅�, is defined 

as:  𝑅𝜗
∅ =

𝜕∅

𝜕�̅�
×
𝜗 

∅
 (Ngari & Koech 2017)        (39) 

On determining the sensitivity indices for all the parameters at DFEP in expressions  𝑅𝑂
𝐴 ,𝑅𝑂

𝐵, and 𝑅𝑂
𝐴𝐵 and 

substituting their values in the Table 4 we obtain:  
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Table 4. Sensitivity Indices  

Parameters 𝛽1 𝛽2 𝜂1 𝜂2 𝑚 𝛿 𝛾 

Sensitivity 

index, 𝑅𝑂
𝑀𝑜𝑚𝑏𝑎𝑠𝑎 

1 0 0.00147801 0 -

0.199766 

-

0.00145617 

-

0.798778 

Sensitivity 

index, 𝑅𝑂
𝑁𝑎𝑖𝑟𝑜𝑏𝑖  

0 1 0 0.002068 -

0.199774 

-

0.00203743 

-

0.798188 

Sensitivity 

index, 𝑅𝑂
𝑀𝑜𝑚𝑏𝑎𝑠𝑎−𝑁𝑎𝑖𝑟𝑜𝑏𝑖  

0.05109 0.948908 0.000137533 0.0404551 -

0.131567 

-

0.00146137 

-

0.866971 

From the above sensitivity analysis, it is observed that the rate of migrations is inversely proportional to the basic 

reproduction number while the infection rates is directly proportional to the basic reproduction number. This 

implies that to reduce the spread of HIV infection more efforts and measures should be focused in reducing the 

infections and encouraging more migrations from Mombasa to Nairobi. In addition, all efforts in attempt to reduce 

the transmission of HIV should be geared towards reducing infection rates in Nairobi than in Mombasa. 

4.3. Numerical simulations 

Numerical simulation was carried out using fourth order Runge-Kutta method in MatlabR2017a to assess the 

dynamical behavior of the system of non-linear ordinary differential equations presented in the presence of control 

parameters. The computer simulations are performed using the initial conditions and parameters in Table 4 and 

presented graphically as shown in Figure (2) to (16) 

  

Figure 2. Population of susceptible individuals in Mombasa with time 

The population of susceptible individuals decreases rapidly with time. This is because the susceptible individuals 

get infected with time and the infected individuals move to the next class of infectious individuals since there are 

no births. At the same time a proportion of the susceptible individuals move to Mombasa thus the decrease. 
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Figure 3 . Population of infectious individuals in Mombasa Figure 4. Population of infectious individuals in  

 with time                    Mombasa as time approaches to infinity

  

Initially, the population of infectious individuals in patch A increases with time when 𝑅0
𝐴𝐵 > 1. However, as time 

approaches to infinity, the population of infectious individuals in patch A remains constant after attaining a 

maximum value. This confirmed the theorem proposed by Anderson and May. 

                        
Figure 5. Population of AIDS individuals in Mombasa             Figure 6. Population of AIDS individuals in  

with time             Mombasa as time approaches to infinity 

      

Initially, the population of people at the final stage of AIDS increases with time. However, as time approaches to 

infinity, the population tends to reduce to zero. 

 

Figure 7. Population of susceptible individuals in Nairobi with Time 
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The population of susceptible in Nairobi decreases rapidly with time and tends to zero with time when 𝑅0
𝐴𝐵 >

1.This is because there are no births as well as transition of infected individuals to the next compartment at the 

same time migration of susceptible individuals to Mombasa. 

 

  

Figure 8 . Population of infectious individuals in  Figure 9. Population of infectious individuals in  

  Nairobi with time                 Nairobi as time approaches to infinity 

As susceptible individuals become infected, the population of infectious individuals in Nairobi increases with time 

when 𝑅0
𝐴𝐵 > 1.A proportion of infected individuals from Mombasa also attributes to this increase. However, as 

time approaches to infinity, the population reaches a maximum point and then remains constant throughout the 

infection period. This confirmed the theorem proposed by Anderson and May. 

 

Figure 10. Population of individuals with AIDS        Figure 11. Population of individuals in Nairobi as time  

in Nairobi with time     approaches infinity   

  

Initially, the population of individuals with AIDS in Nairobi increases gradually with time when 𝑅0
𝐴𝐵 > 1.This is 

due to the infected individuals progressing to AIDS class and addition of AIDS patients from Mombasa. However, 

as time approaches infinity, at first the population increases rapidly before it reaches a maximum value and then 

decreases slowly to zero with time. This agrees with the theorem proposed by Anderson and May. 

4.4. Effect of Migration parameter, 𝒎 on Female Sex Workers, Z 

The migration parameter follows the Monod function, 𝑚 = 𝑚𝑚𝑎𝑥
𝑍

𝑘𝑍+𝑍
  where 𝐾𝑧 = 0.25 from the experimental 

data for bacterial growth by Smith. In our model we use 𝑧 as the Female Sex Workers. From table 3, the maximum 

migration rate is 0.01048/day, thus the modified Monod equation becomes, 𝑚 = 0.01048
𝑍

(0.25+𝑍)
.The minimum 

and maximum estimated values for FSW in Mombasa were taken as 10,000 and 100,000 respectively (Onyulo 
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2016). The estimated minimum number of Female Sex Workers was taken as 2400 per night (Wang 2015). The 

maximum value may be obtained for a period of three weeks or a month. 

Figure 12. Migration and Female Sex Workers in                       Figure 13. Migration and Female Sex Workers in  

                 Mombasa                                                                                       Nairobi 

From the above curves, the rate of migration increases slowly with increase in the number of FSW in Mombasa 

and rapidly increases with increase in the number of FSW, until a maximum value is reached for both towns. 

However, the saturation point is realized much earlier in Nairobi than in Mombasa.  

4.5. Effect of migration parameter, m on the basic reproduction numbers 

        
Figure 14. Basic reproduction for Mombasa and migration       Figure15.Basic reproduction for Nairobi and migration 

Initially, the basic reproduction number increases slightly with increase in the migration parameter due to lower 

infection rate and then increases rapidly from 0.005 to the maximum migration parameter due to higher infection 

rate in Mombasa. Similarly, this is the case in Nairobi but at a slower rate due to lower infection rate. 
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Figure 16: Migrations on combined reproduction number for Mombasa and Nairobi 

From 0.005 to 0.02, the rate of migration with combined basic reproduction number for the model is slow (lag 

stage) and then increases rapidly to the maximum rate. The minimum and maximum value for the migration 

parameter is tabulated in Table 3.  

 

5. Conclusion and recommendation 

5.1. Conclusion 

In this study, HIV transmission model through two closed patches in migration is derived and analyzed. The basic 

reproduction number 𝑅𝑜 for the patches was determined as the dominant eigenvalue of the Jacobian matrix using 

the NGM. The DFEP was also obtained. The model did not show the existence of the endemic equilibrium point. 

The DFEP was proved to be locally asymptotically stable whenever 𝑅0
𝐴𝐵 < 1 .A suitable Lyapunov function was 

constructed and the analysis showed that the disease-free equilibrium point of the model was globally 

asymptotically stable whenever 𝑅0
𝐴𝐵 < 1. Normalized sensitivity indices of basic reproduction number with 

respect to control parameters were obtained as outlined in Table 4. From the analysis it was observed that the rate 

of migration is inversely proportional to  𝑅0
𝐴𝐵while the infection rate is directly proportional to  𝑅0

𝐴𝐵. This implies 

that to reduce the spread of HIV infection more efforts and measures should be focused in reducing the infections 

and encouraging more migrations from Mombasa with higher infection rate to Nairobi with lower infection rate. 

In addition, all efforts in attempt to reduce the transmission of HIV should be geared towards reducing infection 

rates in Nairobi than Mombasa. The Monod curves showed that migration increases with increase in the model 

reproduction number and the number of female sex workers. 

5.2. Recommendations  

From the research findings it is that recommended health practitioners, government policy makers and institutions 

of supply chain management should make deliberate efforts in regulating the migration of individuals to regions 

or transport routes used by truckers. The health implications of this observation are that keeping the reproduction 

number below unity may be necessary in reducing the spread of HIV infection by truck drivers. Health care 

facilities and services should also be provided along the transport corridors to mitigate HIV transmission. Further 

research work should focus on incorporating vital dynamics, increase the patch size as well as varying the 

migration parameter.  
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