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Abstract: The measurement errors exist and sample survey results are always uncertain because only a portion of the population is

measured. Larger samples and superior measurement tools can help to reduce this uncertainty. The statistician may work with a high

number of strata in surveys where there are numerous effective stratification criteria. Even the extreme scenario of a few units like

only one or two observations per stratum is used occasionally. In that case, the collapsed stratum technique is the standard method for

estimating variance. This method, however, is biased and results in an overestimation of the variance. This paper developed a variance

estimator for the total population under fine stratification using a bootstrap bias corrector technique to overcome the drawbacks of

previously explored estimate approaches. The estimator’s properties have been also derived, and the simulation results show that the

proposed estimator outperforms the current ones.
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1 Introduction

We live in the age of information. Statistical surveys are used to determine or evaluate public policy and make critical
business decisions every day. Correct methods for calculating the precision of survey data and drawing conclusions about
the target population are critical for sound decision-making. Defining an estimator for a given parameter of interest and
evaluating the correctness of that estimator via estimates of the estimator’s standard error and determining confidence
intervals for the parameter are two of the most challenging tasks in applied statistics.

The requirement for reliable estimates, typically for very small samples with limited survey resources, and the types
of framing and sampling procedures lead to complex survey design that frequently employs the sampling techniques
such as: simple random sampling, systematic sampling, stratification, clustering, unequal probabilities of selection, and
multi-stage or multi-phase sampling. As a result, the observed value of the variable of interest for units drawn from a
complicated survey sample is neither independent nor identically distributed. Furthermore, survey processing, which aims
to improve the quality and usefulness of survey data, reduce estimation bias, meet confidentiality standards, and so on,
increases the complexity of the survey data[1].

For example, imputation for missing data results in a complete file for analytical use but introduces a new source of
variance. Another example would be the numerous weight modifications required for unit non-response,
post-stratification, benchmarking, and other purposes, which are frequently required to reduce bias or promote efficiency
and consistency with other data sources, resulting in complex estimators, more examples can be find in [2] and [3].

As noted in [4],the variance estimation provides a measure of estimate quality, is used to compute confidence intervals,
aids in drawing accurate conclusions, and allows statistical agencies to provide users with data quality indicators.

The estimation of sampling variance is required to generate the coefficients of variation distributed with survey
estimates and establish confidence intervals for finite population parameters of interest[5].
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Estimating the sampling variance can be extremely difficult because of the complex sample design, non-linear
estimators, and survey processing effects[6]. The simple, precise analytic equations for variance estimates of statistics
under various sample designs are provided in [7].

However, no closed-form formulae for estimating variances exist when sample designs are more complex or
deployed in more phases. Furthermore, complex weighting mechanisms render the variance estimation formula of simple
statistics, such as totals, intractable even with basic sample designs. When there is no accurate technique for unbiased
computing estimates of point estimates’ standard errors, the only choice is to approximate the required quantities. A
different approach is based on replication techniques to get results inside analytic techniques by applying simplified
assumptions concerning the sample design or the statistic to be variance-estimated [8].

In stratified samples, the population is divided into subpopulations called strata that are not overlapping. Homogeneous
subpopulations are often defined by strata, thus reducing the total variance. Regardless of the other, a probability sample
is drawn from each stratum. The sample design might be the same or different from the other strata within each stratum.
Because samples in various strata are independent of one another, each estimate and its related variance estimator are just
the sums of the corresponding estimators inside each stratum. As a result, the difficulty of finding the proper variance
estimator for a stratified single-stage sample is reduced to the problem of determining the optimal variance estimate for
each stratum’s sampling designs [9].

Stratification has several advantages, including using various design and estimating methodologies across distinct
strata, adjusting sample sizes, and managing fieldwork logistics. If the strata are relatively homogeneous in comparison to
the entire population, the variance of estimated population parameters is reduced [10]. Because of these advantages, fine
stratification can be achieved with as few as one or two primary sample units per stratum.

The variance estimation process becomes difficult when we only have one unit per stratum. This scenario may arise if
we have a highly fine stratification. Each stratum has a sample size greater than one, but only one responding unit exists;
the sampling design itself imposes a single unit per stratum. For example, in [11] the new Canadian Health Measures
Survey (CHMS) samples just a single PSU in one of its five strata, although CHMS estimates are required at the national
level. The details discussion for the application of one unit per stratum are available in [10, 12, 13, 14].

In either of these circumstances, it is challenging to calculate variances using one sampled unit per stratum directly.
The statistician may work with a high number of strata in surveys where there are numerous effective stratification criteria.
Even the extreme scenario of only one observation per stratum is used on occasion. However, in that circumstance, the
conventional methods for estimating variances are inapplicable [3].

One-per-stratum designs are the most feasible stratification, although designs with a small number of elements per
stratum are also common. The collapsed stratum technique is the most commonly proposed strategy in the literature for
dealing with this problem. The topic of collapsing strata for variance estimation with one unit per stratum is covered in[7];
[3] and [15]. However, it should be highlighted that the origin of the one-unit per stratum issue is a vital element for this
method’s efficacy. The collapsing of strata is biased and leads to overestimating the variance. In most cases, eliminating
the bias is difficult since it requires knowledge of the stratum totals[3].

Bootstrapping aims to generate artificial data sets with the same structure and sample size as the original data. Simple
random samples are taken from the original to create these artificial data sets with a replacement. The same primary
sampling unit (PSU) can be chosen multiple times and included in the same artificial or pseudo sample.

When there is a well-defined probability model for data, and when there is not, bootstrap approaches can be used.
Bootstrap approaches can be applied to hierarchical data, missing data issues, model selection, robust estimation,
nonparametric regression, and complex data [16]. Due to the complexity of the sample design, non-linear estimators, the
effects of survey processing, and other factors, estimating the sampling variance can become extremely difficult.

For variance estimation, many surveys use the Rao-Wu bootstrap method. It grew in popularity due to its ease of use
and facilitation of the use of design-based analysis [17]. Because the primary sample units are selected with replacement
or the first-stage sampling fractions are extremely small, thus the idea of considering the bootstrap variance estimation
under fine stratification in this paper.

This paper proposes a variance estimator for the total population under fine stratification using a bootstrap bias
corrector methodology to overcome the drawbacks of previously explored estimate approaches. This method has two
unique features: the first is that it ensures an accurate estimate, the second is that it yields variance estimates when the
sample sizes are small in each stratum and it comes in the form of bootstrap weights.

The paper structure is as follows: Section 2 offers a bootstrap bias corrector for variance estimation technique for the
total population. Section 3 determines the proposed estimator’s properties. Section 4 provides an empirical assessment of
the findings, and Section 5 provides the concluding remarks of the findings.
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2 Proposed Estimator

2.1 An Overview on Collapse Strata Technique for Variance Estimation

Let the population total t = ∑H
h=1 th be estimated by t̂ = ∑H

h=1 t̂h = yk
πk

be unbiased for the stratum total th. Assuming a

single element k is selected with probability πk from the stratum, the unity πk add to unity in the stratum.

In particular πk =
1

Nh
for all k if simple random selection is used. After pairing the strata, let i and j refer to the two

strata in ith and jth pair such that i = 1, ...,H and j = 1, ...,H. We suppose that the value of the study variables yk is
observed without error for the unit k ∈ s. Our goal is to estimate the total population:

t = ∑
k∈U

yk =
H

∑
i=1

∑
k∈Ui

yk =
H

∑
i=1

ti (1)

Otherwise, define Ik = 1 if k ∈ s and Ik = 0. If πk > 0 for all k ∈ U, the design is considered to be measurable, and the
design variance admits an unbiased estimator as discussed in [18, 19]:

t̂ =
H

∑
i=1

t̂i =
H

∑
i=1

∑
k∈Ui

yk

Ik

πk

(2)

is unbiased for t, and its variance is determined by

var(t̂) =
H

∑
i=1

var
(̂
ti
)
=

H

∑
i=1

Vi (3)

where Vi is defined by

Vi = ∑
k,l∈si

∑ (πkl −πkπl)
ykyl

πkπl

(4)

Define

c j(i) =

{
1 for i, j : i 6= j belong to the same collapsed stratum

0 otherwise

In [3, 10, 15] the collapsed stratum variance estimator is given by

V̂coll =
1

2

H

∑
i=1

(
t̂i −

H

∑
j=1

c j(i)t̂ j

)2

(5)

Its expectation of design is easily demonstrated to be

E
[
V̂coll

]
= var(t)+

1

2

H

∑
i=1

(
ti −

H

∑
j=1

c j(i)t j

)2

(6)

As shown in (6), the estimator in (5) has a positive bias, and the bias is small if the strata are successfully matched,
in the sense that ti ≈ t j and c j(i) = 1. To retain the statistical properties, the pairing must be conducted irrespective of any
sample knowledge. There is also a temporal, geographical, or other structure in populations that uses fine stratification
that may be employed in pairing [8].

2.2 An overview on Nonparametric variance estimation

To reduce the bias in (5), the alternative methods was introduced in [10], where, the binary function c j(i) in equation (5)
was replaced by the kernel weights defined by:

d j(i) =
K
(

xi−x j

h

)

∑H
j=1 K

(
xi−x j

h

) (7)
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where K(.) is a symmetric, bounded kernel function and h is a bandwidth parameter. The nonparametric variance estimator
which is an alternative to collapsed variance estimator in (5) is given by :

V̂ker =
1

Cd

H

∑
i=1

(
t̂i −

H

∑
j=1

d j(i)t̂ j

)2

(8)

with

Cd =
1

H

H

∑
i=1

(
1− 2di(i)+

H

∑
j=1

d2
j (i)

)
(9)

the nonrandom normalizing constant and depends on the kernel weights but not on the survey variables.
The expectation variance of the estimator (8) is given by

E
[
V̂ker

]
=C−1

d

H

∑
i=1

Vi

(
1− 2di(i)+

H

∑
j=1

d2
i ( j)

)
+C−1

d

H

∑
i=1

(
H

∑
j=1

d j(i)(ti − t j)

)2

(10)

where the nonrandom normalizing constant depends on the kernel weights but not on the survey variables. The estimator
(8) is biased. Therefore Cd was chosen to reduce the part of the bias due to Vi if the Vis are constant across strata.

2.3 An overview on bootstrap variance estimation

The estimation of variance necessitates the use of at least two sampled PSUs in each stratum. The Labour Force Survey
in Canada is a typical example. However, certain strata may only have one sampled PSU in the final tabulation file for
various reasons. It can happen due to poor design or survey results, such as out-of-scope and non-responding houses.

Several things influence the sampling variance of an estimate. The population size, sample size, sampling technique
used to form the sample, response rate, and homogeneity of the characteristic of interest in the population are the most
important criteria. The population size is uncontrollable. Response rates can occasionally be influenced by data
collection but not usually by the sample design. A more effective sample design, on the other hand, can be established by
controlling the number of people in the sample, the sampling method used to generate the sample, and the homogeneity
across sampled strata. For the standard variance estimate of the total, the bootstrap variance is not totally unbiased, a bias
substantial enough for some of the small sample sizes seen in survey sampling. The Rao-Wu rescaling bootstrap,
introduced in [20], can be described as a method to attain unbiasedness on both fronts by using a suitable linear
transform of Efron’s estimator.

The first step in implementing the Rao-Wu bootstrap is to choose bootstrap samples. Using simple random sampling
for each stratum h, mh PSUs are drawn from the original set of nh sampled PSUs. For most Rao-Wu bootstrap applications,
mh is set to nh − 1.

Each stratum should have at least two sampled PSUs to estimate the variance [21]. This bootstrap sample selection
procedure is repeated B times. The multiplicity of the PSU is defined as the number of times the jth PSU is selected in
the bootstrap sample of the bth replicate: mb

h j where b = 1, ...,B. The multiplicity mb
h j, must be between 0 and nh j − 1

inclusive, and must satisfy ∑
nh
j=1 mb

h j = nh j − 1 for each bootstrap replicate and stratum.

The next step is to generate B bootstrap weight sets by multiplying the original survey weight by an adjustment factor,
denoted as:

w
(b)
h jk =

nhm
(b)
h j wh jk

nh − 1
(11)

where wh jk is the survey weight for unit k in PSU j and stratum h, and w
(b)
h jk is the bootstrap weight for the bth replicate.

The bootstrap variance estimate is produced for an estimate, θ̂ , of a population parameter, θ . Each set of bootstrap

weights is used to generate the estimate, resulting in B estimates designated as θ̂ ∗
1 , ..., θ̂

∗
B , and the bootstrap variance

estimate is provided by:

V̂boot(θ̂ ) =
1

B

B

∑
b=1

(
θ̂ ∗

b − θ̂ ∗
(.)

)2

(12)

where θ̂ ∗
(.) =

1
B ∑B

b=1 θ̂ ∗
b . As the number of replicates increases, so does the precision of the variance estimator.
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2.4 The proposed Bootstrap bias corrected non parametric variance estimator under fine

stratification

From (2), we define the bootstrap total population t∗b =∑H
i=1 y∗k

1
πk

by using the replication variable y∗k in stratum population

U∗
i . For given H, over all B resamples across the stratum, the bootstrap estimator of total population tb is calculated. We

define the bias of an estimator t̂b j

Bias(t̂b j) = E(t̂b j)− tb j (13)

A bootstrap based approximation to this bias is given by

1

B

B

∑
b=1

(t̂ jb − tb j) = B̂iasB(t̂b j) (14)

where t̂ jb are copies of bootstrap of tb j.
This construction is also based on standard bootstrap thinking to replace the population with the sample’s empirical

population. The following defines the bootstrap bias corrector:

ac j = t̂b j − B̂iasB(t̂b j) (15)

Then from (8) we replace the weights d j(i) by the bootstrap bias corrector defined in (15), therefore, the bootstrap variance
estimator under fine stratification is given by:

V̂boot =
1

cb

H

∑
i=1

(
t̂bi −

H

∑
j=1

ac j t̂b j

)2

(16)

where ac j is the bootstrap bias correct defined in (15) and cb is the nonrandom normalizing constant depending on
bootstrap bias corrector.

3 The properties for the proposed Estimator

The bootstrap variance estimator is judged based on design expectation, design variance, mean square error, and a specific
sampling design for the fixed finite population. Therefore, we are interested in finding the above estimators’ statistical
properties about the sampling design. The design expectation of V̂boot is given by:

E
[
V̂boot

]
= E

[
1

cb

H

∑
i=1

(
t̂bi −

H

∑
j=1

ac j t̂b j

)2

]

=
1

cb

H

∑
i=1

E
(

t̂bi −
H

∑
j=1

ac j t̂ j

)2
(17)

then,

E
[
V̂boot

]
=

1

cb

H

∑
i=1

[(
V
(
t̂bi −

H

∑
j=1

ac j t̂b j

))
+
(

E
(
t̂bi −

H

∑
j=1

ˆac j t̂b j

))2]
(18)

But (
E
[
t̂bi −

H

∑
j=1

ac j t̂ j

])2

=
(

E
(
t̂bi

)
−

H

∑
j=1

ac jE
(
t̂b j

))2

Since t̂bi and t̂b j are approximately unbiased estimators of tbi and tb j respectively, then

(
E
[
t̂bi −

H

∑
j=1

ac j t̂b j

])2

=
(

E
(
t̂bi

)
−

H

∑
j=1

ac jE
(
t̂b j

))2

=

(
tbi −

H

∑
j=1

ac jtb j

)2
(19)
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Now consider

(
V
(
t̂bi −

H

∑
j=1

ac j t̂b j

))
=V

(
t̂bi

)
+V

( H

∑
j=1

ac j t̂b j

)
− 2Cov

(
t̂bi,

H

∑
j=1

ac j t̂b j

)

Again,

(
V
(
t̂bi −

H

∑
j=1

ac j t̂b j

))
=V

(
t̂bi

)
+Cov

(
H

∑
j=1

acbt̂ jb j;
H

∑
j=1

ac j t̂b j

)

− 2Cov

(
H

∑
j=1

ac j t̂i,
H

∑
j=1

an jt̂ j

)

(
V
(
t̂bi −

H

∑
j=1

ac j t̂b j

))
=V

(
t̂bi

)
+

H

∑
j=1

H

∑
j=1

ac jV (t̂b j)− 2
H

∑
j=1

ac jCov(t̂b j, t̂bi)

Thus,

(
V
(
t̂bi −

H

∑
j=1

a jt̂b j

))
=Vi

[
1+

H

∑
j=1

a2
c j − 2

H

∑
j=1

ac j

]
(20)

Now take (19) and (20) in (18) yields

E
[
V̂boot

]
=

1

cb

H

∑
i=1

[
Vi

[
1+

H

∑
j=1

a2
c j − 2

H

∑
j=1

ac j

]
+

(
tbi −

H

∑
j=1

ac jtb j

)2
]

(21)

3.1 The Bootstrap bias corrected non parametric variance estimator

The design variance of V̂boot is given by:

Var(V̂boot) = E
[
V̂ 2

boot

]
−
(
E[V̂boot ]

)2

Let, V̂boot = Y , we have Var(Y ) = E
[
Y 2
]
− (E[Y ])2

with

E
[
Y 2
]
=Var(Y )+ (E[Y ])2

Now, let us consider term by term:

(E[Y ])2 =
(

E
[ 1

cb

H

∑
i=1

(
t̂bi −

H

∑
j=1

ac j t̂b j

)2])2

=
1

c2
b

H

∑
i=1

(
E
[
t̂bi −

H

∑
j=1

ac j t̂b j

]2)2

(22)

Use (18) and (19) in (22) we have

(E[Y ])2 =
1

c2
b

( H

∑
i=1

(
Vi

[
1+

H

∑
j=1

a2
c j − 2ac j

]
+
(
tbi −

H

∑
j=1

ac jtb j

)2
)2

(23)
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For the next term, we have:

Var(Y ) =Var
( 1

cb

H

∑
i=1

(
t̂bi −

H

∑
j=1

ac j t̂b j

)2
)

=
1

c2
b

H

∑
i=1

Var

(
t̂bi −

H

∑
j=1

ac j t̂b j

)2

=
1

c2
b

H

∑
i=1

Var
(

t̂2
bi − 2t̂bi

H

∑
j=1

ac jt̂b j +
( H

∑
j=1

ac j t̂b j

)2
)

=
1

c2
b

H

∑
i=1

(
Var(t̂2

bi)− 4
H

∑
j=1

a2
c jVar(t̂bit̂b j)+

H

∑
j=1

a4
c jVar(t̂2

b j)

)

=
1

c2
b

H

∑
i=1

V 2
i

[
1− 4

H

∑
j=1

a2
c j +

H

∑
j=1

a4
c j

]

(24)

Hence, the Variance of V̂boot is given by:

Var(V̂boot) =
1

c2
b

H

∑
i=1

V 2
i

[
1− 4

H

∑
j=1

a2
c j +

H

∑
j=1

a4
c j

]
(25)

3.2 The Mean Squared error of Bootstrap bias corrected non parametric variance estimator

The design mean square error of our estimator is defined by:

MSE(V̂boot) =Var(V̂boot)+
(

E
[
V̂boot

]
− V̂boot

)2

=
1

c2
b

H

∑
i=1

Var(t̂∗2
bi )
[
1− 4

H

∑
i=1

a2
c j +

H

∑
i=1

a4
c j

]

+
( 1

cb

H

∑
i=1

Vi

[
1+

H

∑
j=1

ac j
2 − 2

H

∑
j=1

ac j

])2

=
1

c2
b

H

∑
i=1

V 2
i

[
2+

H

∑
j=1

(
a4

c j − 3a2
c j − 2ac j

)]

(26)

4 Simulation

In this part, we provide results from simulation comparing the performance of collapsed variance, nonparametric variance,
and bootstrap variance estimators under fine stratification at various number of strata, bandwidth, and standard deviation
error values. To estimate the collapsed variance, we arrange the H strata into groups of at least two strata each. we consider
the basic scenario when H is even and each group comprises exactly two of the original strata and the estimator is defined
in (5). For nonparametric variance estimator in (8),the Epanechnikov kernel function,

K(s) =
3

4

(
1− s2

)
I{|s|≤1} (27)

is used and bandwidths are chosen as 1/H < h < 2/H to yield smallest possible nonempty kernel window. The suggested
estimator in (16) is a bootstrap nonparametric variance estimator that may be an alternative for the collapsed and Kernel
nonparametric variance estimators in fine stratification cases. During this simulation, 1000 bootstrap samples were taken
into account to evaluate the quality of the estimator. The population xk are generated as independent and identically
distributed uniform (0,1) random variables. We created a stratified finite population with seven survey variables of interest
with H evenly sized strata of size Ni = N/H and xi = i/H for stratum i.
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We evaluate three possible values for the standard deviation of the errors:σ = 0, σ = 0.25 and σ = 0.5. The population
is of size N = 3000 for each of the seven variables. Samples are generated by simple random sampling using strata size
H = 50, H = 100 and H = 200 as fine stratification involves to use many strata and in all cases, we have considered
H = 30 to be collapsed. The effect of increasing sample size is similar to the effect of decreasing error standard deviation.
As the population is kept fixed during these 1000 bootstrap samples, we can evaluate the estimators’ design-averaged
performance. Specifically, we estimate the design bias, design variance, and design mean squared error. For the first seven
variables of interest,as detailed in [22] and [10], we assume that the mean functions are equal to

µ
(ℓ)
∗ (x) = 2

µℓ(x)−minx∈[0,1] µℓ(x)

maxx∈[0,1] µℓ(x)−minx∈[0,1] µℓ(x)
(28)

This indicates that for each of the first seven mean functions, the lowest is zero and the maximum is two. The population
values yℓk,(ℓ= 1, ...,8) are generated from the mean functions by adding i.i.d N(0,σ2) errors in all cases except cd f . That
is;

y
(ℓ)
k = µ

(ℓ)
∗ (xi)+σek for k ∈Ui (29)

so that, the total is given by

t
(ℓ)
i =

N

H
µ
(ℓ)
∗ (xi)+σ ∑

k∈Ui

ek = µ (ℓ) (xi)+ εi. (30)

where the mean functions are defined as:

Linear: µ1(x) = 1+ 2(x− 0.5)
Quadratic: µ2(x) = 1+ 2(x− 0.5)2

Bump: µ3(x) = 1+ 2(x− 0.5)+ exp
(
−200(x− 0.5)2

)

Jump: µ4(x) =
{

1+ 2(x− 0.5)I{x≤0.65}

}
+ 0.65I{x>0.65},

cdf: µ5(x) = Φ
(

1.5−2x
σ

)
, where Φ is the standard normal cdf,

Exponential: µ6(x) = exp(−8x)
Cycle1: µ7(x) = 2+ sin(2πx)
Cycle4: µ8(x) = 2+ sin(8πx)

(31)

with x ∈ [0,1].These represent a range of correct and incorrect model specifications for the various estimators considered.
µ1, is expected to be the preferred estimator since the assumed model is correctly specified. Therefore, it is interesting to
see how much efficiency is lost by assuming that the underlying model is smooth instead of linear. The remaining mean
functions represent various departures from the linear model. For µ2, the trend is quadratic, so that an assumed linear
model would be misspecified over the whole range of the xk, but would be reasonable locally. The function µ3 is linear
over most of its range, except for a bump present for a small portion of the range of xk. The mean function µ4 is not
smooth.The sigmoidal function µ5 is the mean of a binary random variable , and µ6 is exponential. The function µ7 is a
sinusoid completing one full cycle on [0,1], while µ8 completes four full cycles [22].

Table 1: The exact bias of V̂col , V̂ker and V̂boot for σ = 0.

Cases estimator line quad bump jump expo cycle1 cycle4

H = 50 V̂col 99.10 78.57 116.43 93.224 28.22 108.71 117.08

h = 0.025 V̂ker 3.09 315.97 142.59 3800.16 128.04 49.96 1282.3
V̂boot 0.037 0.048 0.034 0.027 0.076 0.057 0.029

H = 100 V̂col 12.18 8.42 14.78 11.29 2.83 13.52 13.80

h = 0.015 V̂ker 1.14 1.74 8.21 5.54 7.33 1.52 2.97

V̂boot 0.019 0.033 0.017 0.016 0.023 0.019 0.030

H = 200 V̂col 1.51 0.97 1.86 1.39 0.32 1.69 1.70

h = 0.0055 V̂ker 0.086 0.87 0.46 791.05 0.41 3.56 31.94

V̂boot 0.018 0.014 0.011 0.017 0.0086 0.024 0.025
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Table 1 shows the exact biases of the variance estimators when Vi = 0, implying that var(t̂)= 0. In this case, the expectation
and bias of the variance estimators are solely determined by the ti values, the kernel, and H, so the results presented here
are applicable to any design. The proposed bootstrap variance estimator has a much smaller bias for every response
variable than the collapsed stratum variance estimator and the non-parametric variance estimator. At each value of H,
V̂boot outperforms V̂col and V̂ker because it has a smaller bias; at higher strata, the variability of the two estimators is
essentially comparable.

The variance estimators’ root mean squared error (RMSE) is then considered. We consider stratified simple random
sampling without replacement with H = 50, H = 100, and H = 200 strata and three different bandwidths for each. We
computed the various estimators for 1000 bootstrap samples of size H, chosen using stratified simple random sampling
with one element per stratum, and 1000 bootstrap samples of size 2H, chosen using stratified simple random sampling
without replacement and two elements per stratum.

The next tables show both the RMSE ratios of the kernel nonparametric variance estimator (V̂ker) and the collapsed
variance estimator (V̂coll) to the bootstrap nonparametric variance estimator (V̂boot) for comparison.

Table 2: The ratio of root mean squared error (RMSE) of V̂ker to the (RMSE) of V̂boot for the for eight response variables.

H h σ Ratio line quad bump jump expo cy1 cy4 cdf

50 0.025 0.25 V̂ker : V̂boot 5.34 4.11 4.28 8.09 4.04 5.08 4.93 2.14

100 0.015 0.25 V̂ker : V̂boot 5.18 3.36 6.06 249.36 14.92 5.04 3.79 8.41

200 0.0055 0.25 V̂ker : V̂boot 4.54 3.73 12.15 42.59 4.42 5.95 15.94 8.56

50 0.025 0.5 V̂ker : V̂boot 6.0 4.53 7.05 30.58 2.57 7.22 5.68 1.39

100 0.015 0.5 V̂ker : V̂boot 3.21 3.23 3.20 11.05 2.53 3.73 3.65 1.76

200 0.0055 0.5 V̂ker : V̂boot 4.62 2.79 4.86 62.94 2.79 2.98 5.01 1.43

100 0.045 0.25 V̂ker : V̂boot 5.69 3.36 6.07 49.20 14.98 5.04 3.79 4.45

200 0.0075 0.25 V̂ker : V̂boot 4.61 3.77 7.83 49.04 4.42 5.97 4.85 1.58

100 0.045 0.5 V̂ker : V̂boot 3.64 3.18 3.19 13.92 48.58 14.60 3.66 2.44

200 0.0075 0.5 V̂ker : V̂boot 4.37 2.73 4.53 28.88 2.77 2.83 4.49 1.43

From table 2, we calculated the ratio of the RMSE of V̂ker to the RMSE of V̂boot for each design, with values greater
than one favouring the bootstrap variance estimator almost for all variables considered.

Table 3: The ratio of root mean squared error (RMSE) of V̂coll to the (RMSE) of V̂boot for the for eight response variables.

H σ Ratio line quad bump jump expo cy1 cy4 cdf

50 0.25 V̂coll : V̂boot 30.08 18.28 25.81 170.40 8.98 26.29 27.31 8.14

100 0.25 V̂coll : V̂boot 66.80 30.11 73.91 455.12 69.67 52.36 42.22 11.64

200 0.25 V̂coll : V̂boot 4.79 3.85 8.39 4.95 3.50 4.94 5.09 15.39

50 0.5 V̂ker : V̂boot 33.87 20.17 42.51 95.54 5.71 37.25 31.47 13.41

100 0.5 V̂coll : V̂boot 5.49 4.35 5.83 28.75 2.74 6.03 5.96 8.48

200 0.5 V̂coll : V̂boot 4.62 2.79 4.86 62.94 2.78 2.97 5.014 4.63

From table 3 in every scenario studied, the suggested bootstrap variance estimator has a smaller RMSE than the collapsed
stratum variance estimator, frequently significantly lower. In practice, stratified designs that are not quantifiable, like
systematic sampling or designs that combine one and two strata, are prevalent. The bootstrap variance estimator described
in this study may be beneficial in such circumstances. Even when the design is measurable, the unbiased variance estimator
is frequently avoided because it can fail when used to estimate domain quantities.

4.1 Simulation results under conditional studies

To see how the performances of the variance estimates depend on x̄, we arranged the 1000 bootstrap samples from each
population to increase values in x̄. We then grouped the samples in 50 sets of 20 so that the first set contains 20 wherein x̄
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are smallest, the next set contains the samples with the next 20 smallest in x̄, and so on. For each of these so 50 sets, we
calculated the average value of x̄, the conditional root mean squared error (CRMSE) , and the variance estimates’ averages
for all the variance estimators. We then plotted the values of CRMSE against the average values of x̄.
Figures ?? show that the new estimator has a small conditional RMSE in almost every scenario considered.

Fig. 1: The CRMSE(V̂boot) estimator against the CRMSE(V̂ker) and CRMSE(V̂coll) estimators
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We also considered different strata for all mean functions in deriving the biases. From figure ??, it is clear that the
new estimator is better in terms of having small bias under the same conditions than the estimators favoured in the current
practice. Another notable consequence is that the estimators V̂boot , V̂ker and V̂coll are asymptotically equivalent as the
number of strata increases. The figures below show that V̂boot is more robust than V̂ker and V̂coll in each case as the bias of
the new estimator approaching zero.

Fig. 2: The Bias(V̂boot) estimator against the Bias(V̂ker) and Bias(V̂coll) estimators
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5 Conclusions and Suggestions

In this paper, a bootstrap variance estimator has been developed as an alternative to the collapsed variance estimator and
the nonparametric kernel based variance estimator, which are currently used in situations where only one or two primary
sampling units are chosen in each stratum. The properties have been determined, and the simulation results show that the
developed estimator outperforms the existing one in cases tried. Compared to the current estimators at the same number
of strata, it has a small root mean squared error. One common issue is that as the number of strata collapsed increases, all
estimators perform well under the same conditions. Because the method is based on bootstrap weighting, it can be applied
to a variety of other situations where bootstrap weighting can be applied, such as multivariate xi, such as the important
practical case where xi is a vector of spatial coordinates with a mix of continuous and categorical covariates.
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