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�e problem in nonparametric estimation of �nite population total particularly when dealing with high-dimensional datasets is
addressed in this paper. �e coverage properties of a robust �nite population total estimator based on a feedforward back-
propagation neural network developed with the help of a superpopulation model are computed, and a comparison with existing
model-based estimators that can handle high-dimensional datasets is conducted to evaluate the estimator’s performance using
simulated datasets. �e results presented in this paper show good performance in terms of bias, MSE, and mean absolute error for
the feedforward backpropagation neural network estimator as compared to other identi�ed existing estimators of �nite pop-
ulation total in high-dimensional datasets. In this regard, the paper recommends the use of the proposed estimator in estimating
population parameters such as population total in the presence of high-dimensional datasets.

1. Introduction

Assume that there is a �nite population of N unique and
identi�able units;U � 1, 2, . . . , N{ }. Let each population unit
to have the variable of interest Y. It is assumed that auxiliary
variable X ∈ Rd exists which is closely related with Y and is
known for the entire population (i.e., X1, X2 . . . , XN). Re-
searchers encounter the problem of estimating a population
function (i.e., a function of Y′s), for instance, the population
total.

T �∑
N

i�1
Yi. (1)

While estimating the population total T, a sample s is
picked so that the pair (xi,j, yi), i � 1, 2, . . . , n and
j � 1, 2, 3, . . . , d, is obtained from the variables X and Y.
�ese are then used in the design, estimation, or both stages.
For these auxiliary variables, a superpopulation model [1, 2]
can be used at the estimation stage of inference. It should be
noted that all these methods are based on simple statistical

models that describe the underlying relationships between
the survey and auxiliary variables (linear regression models).
Hansen [3] showed that under the parametric super-
population, model misspeci�cation can lead to substantial
errors in inference. To solve this problem, nonparametric
regression involving robust estimators in �nite population
sampling has been proposed [4–6].

When applying nonparametric kernel-based regression
estimators over a �nite range in estimating �nite population
parameters, one of the most common problems that is
encountered is the bias at the edges [7]. It is also known that
kernel and polynomial regression estimators provide good
estimates for the population totals when x ∈ Rd and d � 1
[6, 8].

Despite the fact that high-dimensional auxiliary
knowledge can be accounted for in the aforesaid estimators,
the problem of sparse regressors in the design space makes
kernel methods and local polynomials unfeasible, as per-
formance deteriorates signi�cantly as the dimension in-
creases [8–10]. �e reason behind this poor performance is
due to the curse of dimensionality. �e “curse of
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dimensionality” is a phenomenon induced by the sparsity of
data in high-dimensional spaces leading to a decrease in the
fastest attainable rates of convergence of regression function
estimators towards their target curve as the dimension of the
regressor vector grows. Friedman [11] provided an overview
of the concept of the curse of dimensionality.

Given the challenge of the curse of dimensionality, one
has to use different nonparametric estimators to retain a
large degree of flexibility. Using recursive covering inmodel-
based approach [12] and generalized additive modelling in a
model-assisted framework [13] is one way to get around this
curse of dimensionality when dealing with multivariate
auxiliary information. )ese estimation methods come at a
cost of reduced flexibility with the associated risk of in-
creased bias [9–11, 14].

In this regard, a robust nonparametric estimator of finite
population total based on a feedforward backpropagation
neural network method is proposed in this paper to help in
resolving the failures of previously identified estimation
approaches. Despite the fact that kernel and local approx-
imators have the same property as artificial neural networks
(ANNs), they usually require a large number of components
to achieve similar approximation accuracy [15]. As a con-
sequence, ANNs are regarded as an efficient method of
performing parametric and nonparametric functional
analysis.

2. Neural Network Estimator of Finite
Population Total

In describing this estimator, the procedure provided in [16]
is followed. Let Y be the survey variable associated with an
auxiliary variable X assumed to follow a superpopulation
model under a model-based approach. A commonly used
working model for the finite population is

yi � m xi(  + εi, (2)

such that xij ∈ Rd, ε1, ε2, . . . , εN i.i.d with mean zero and
xij, i � 1, 2, . . . , N, j � 1, 2, . . . , d are considered as the
auxiliary information.

Also let

T � 
i∈s

yi + 
i∈r

yi, (3)

be the finite population total where s are the sample units
and r are the nonsampled units. Assume that yi is given
according to equation (2) with xi ∈ Rd, ε1, ε2, . . . , εN i.i.d.
Consider estimating m(x) based on a feedforward back-
propagation neural network. )e neurons which act as the
basic building blocks can be considered as a nonlinear
transformation of the input variables x � (x1, . . . , xd)′.

Feedforward neural network that has least one layer of
hidden units is considered to be a complex network and
allow for information feedback can be specified. Without
loss of generality, the paper will only concentrate on the
structure presented in equation (4), which is commonly used

for a wide range of applications and has appealing features of
being implemented in statistical softwares.

In the simplest case of one hidden layer with H≥ 1
neurons, the network can be written to represent the net-
work function as follows:

fH(x, θ) � v0 + 

H

h�1
vhψ w0h + x

T
wh , x ∈ Rd

, (4)

with wh � (w1h, . . . , wdh) ∈ Rd and

θ � w01, . . . , w0H, w
T
1 , . . . , w

T
H, v0, . . . , vh 

T
∈ RM(H)

, (5)

where M(H) � (d + 1)H + H + 1 represents the vector of all
parameters of weights of the network. ψ: R↦R is a given
activation function. Regarding regression issues, sigmoid
functions that resemble the distribution function of a gen-
uine random variable, for example, typically produce good
results. )e logistic sigmoid and the bipolar sigmoid are two
extensively used sigmoid functions that can be employed
depending on the needed output. Whenever the goal is to
approximate functions that map into probability space, the
logistic function is preferred. )e activation function is
viewed as a smooth equivalent of the indicator function when
the input signals are “squashed” between zero and one. As an
illustration of the logistic function, consider the following:

ψ(u) �
1

1 + exp(−u)
, −∞< u<∞, (6)

which tends to one (zero) since its arguments approach
infinity (negative infinity). As a result, based on the received
input signals, the logistic activation function creates partially
on/off signals.

For this work, fH(x; θ) specifies a one-dimensional
mapping from the input space Rd to the output space.
O � fH(x; θ), θ ∈ RM(H), H≥ 1 ; for each continuous
function m, any ε> 0, and any compact set C⊆Rd, there
exists a function fH ∈ O with uniform approximation
qualities [17–19], for example,

sup
x∈C

m(x) − fH(x; θ)


< ε. (7)

)is suggests that any regression function m(x) can be
well estimated with a big sufficient number of neurons and
the right parameters θ.

)erefore, a nonparametric estimate for m(x) is ob-
tained by first choosing H, which serves as a tuning pa-
rameter and determines the smoothness of the estimate. )e
parameter θ is estimated from the data by nonlinear least
squares:

θn � arg min
θ∈RM(H)

Dn(θ), (8)

with

Dn(θ) � 
s

yi − fH(x; θ)( 
2
. (9)

Under the right circumstances, θn converges in proba-
bility as n⟶∞ and H, constant to the parameter vector
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θ ∈ ΘH which equates to the best approximation of m(x) by
a function of type fH(x; θ), θ ∈ ΘH with

θ � arg min
θ∈RM(H)

D(θ)withD(θ) � E m(x) − fH(x; θ) .

(10)

Also, under some stronger assumptions, the asymptotic
normality of θn and thus the estimator of m(x) � fH(x; θn)

also follow the regression function m(x). )erefore, the
immediate consequence of these is that fH(x; θn)⟶
fH(x; θ) for n⟶∞.

)e estimation error θn − θ can be broken down into two
asymptotically independent parts: θn − θ � (θn − θn)

+(θn − θ), where the value

θn � arg min
θ∈RM(H)



n

i�1
m(x) − fH(x, θ) 

2
, (11)

minimizes the sample version of D(θ) [20]. fH(x; θ)

converges to the regression function m(x) for H⟶∞,
due to the universal approximation property of neural
networks. As H grows with n at an adequate rate, fH(x; θn)

becomes a consistent nonparametric estimator of m(x). As a
result of these findings, Were and Orwa [16] showed that the
corresponding estimate of the finite population total is as
follows:

TNN � 
j∈s

yj + 
j∈r

mn xj , (12)

which is the proposed estimator for the finite population
total where mn(xj) � fH(x; θn).

As noted in [16], TNN is a model-based estimator, so that
all the inference is with respect to the model for the yi

′s, not
the survey design. )is estimator is identical to that pro-
posed in [5], except that the NN is replaced by a kernel-based
regression. Lastly, this estimator can be used to estimate the
population totals of a finite population as long as each of the
unsampled elements has the same distribution as the sample.

It should be noted that

(1). Where certain conditions are satisfied and if the
activation function ψ(u) is Lipschitz continuous
and strictly increasing, then it can be shown that the
neural network estimate TNN of the population total
T given by (12) with mn(x) � f(x, θn) and θn given
by (8) is consistent in the following sense.

1
N

T − TNN


⟶ 0 in probability, (13)

where N, n⟶∞ with (n/N)⟶ π ∈ (0, 1),
provided that the number Hn and the bound Δn of
the network weights satisfy Hn,Δn⟶∞ such that

Δn � o n
1/4

 ,

HnΔ
4
nlogn � o(n),

Hnlogn � o Δαn( ,

(14)

where α determines how fast the tail probability of
the εi and yi decreases. White [19] showed that the
appropriate choice for Δn is such that Δn⟶∞ as
n⟶∞ and Δn � o(n1/4), i.e., n1/4Δn⟶ 0 as
n⟶∞.

(2). Where certain conditions are met, it can be shown
that the mean squared error defined by E(TNN − T)2

where T denotes the true population total of the
proposed estimators reduces to

E TNN − T( 
2

�
1 − f

n
var εi( , (15)

where estimate of var(εi) is given as

var εi(  �
v

v − 2
1
H



H

i�1
σ2i . (16)

For the details and complete proof of these prop-
erties, see [16].

3. Coverage Properties

In order to compute and understand the coverage properties
of the proposed estimator and how it is compared against
other existing nonparametric regression estimators, the
proposed estimator’s performance is compared to that of
identified estimators: multivariate adaptive regression
splines (MARS), generalized additive model (GAM), and
local polynomial (LP), which can handle high-dimensional
data through a simulation study.

Scenarios where the true function is the sum of two-
dimensional linear function, two-dimensional quadratic
function, and three-dimensional mixed function given be-
low are considered:

2-dim linear: m(x) � −1 + 2X3 + 4X6.
2-dim quadratic: m(x) � 5.5 − 6X2 + 8(X2 − 0.5)2−

3X10 + 32(X10 − 0.5)3.
3-dim mixed model: m(x) � 8(X2 − 0.5)2+ exp(2X5 −

1) +sin(2π(X8 − 0.5)).

For all of the simulation performed, data are generated
according to model 2 where ε ∼ N(0, 1). )e auxiliary
variable vector X ∈ Rd was generated from iid uniform (0,1)
random vector. )e errors ϵ were generated from i.i.d
N(0, 1) with noise level σ � 0.1, 0.4. tanh is used as the
activation function in this neural network.

1000 samples of sizes 4, 000 and 8, 000 were generated
using simple random sampling from a population of size
10, 000. Because of the hypothesized relationship between
the study variable and the auxiliary variable, which must be
depicted in the simulation, the sampling is done with
indices.

Tables 1–3 summarize the findings of this simulation
investigation. )e unconditional bias (UB), unconditional
mean square error (UMSE), unconditional relative mean
square error (URMSE), and unconditional mean absolute
error (UMAE) for said estimators at different sample sizes
are shown in Tables 1–3. )e MAE reveals how near the
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estimate being examined is to the true value, while the MSE
and RMSE represent the estimator’s precision. For example,
if TNN’s UMSE and URMSE are comparable, it will rea-
sonably be considered “better” or “more desirable” than
other estimators.

)e deviation of the estimator’s expected value from the
true total value is known as the bias of a population total
estimator. All of the estimators of the finite population total
discussed here are biased, but TNN is the least biased. TNN
can be seen as most efficient estimator of finite population
total in all models and sample sizes, closely followed by
TMARS. Because of their relatively large bias values, the
generalized additive estimator and the local polynomial
regression estimator overestimate the finite population total
under all models.

In addition, TNN has lower mean square error, relative
mean square error, and mean absolute error which is followed
closed with the estimator TMARS. It is also observed that as the
sample increases, all the estimators recorded a significant
improvement in their performance in estimating the finite
population totals. )e local polynomial regression estimator
with a significant reduction in bias and mean square error is
noteworthy. )is follows the argument by Stone [10]: to im-
prove the efficiency of the local smoother in high-dimensional
spaces, one has to use a large sample size. )e neural network
estimator still outperforms other estimators with significant
reduction in biases, mean square errors, relative root mean
square errors, mean absolute errors, and mean absolute per-
centage errors as sample sizes increases.

)e results provided in Table 3 which provides the results
for performance of the estimators for a three-dimensional
mixed model are noteworthy. Compared to the two-dimen-
sional case, the performance of all the estimators hasmarginally
decreased as indicated by marginal increase in biases, mean

square errors, relative mean square errors, and mean absolute
errors across all the estimators of finite population total. It is
also observed that the generalized additive estimator and local
polynomial regression still recorded poor performance in terms
of biases, mean square errors, relative mean square errors, and
mean absolute errors in estimating the finite population total.
In the other case, TNN has lower biases, mean square errors,
relative root mean square errors, mean absolute errors, and
mean absolute percentage errors which is followed closely by
the estimator TMARS.

Even with the increasing sample size, all the estimators
record a significant improvement in their performance in
estimating the finite population totals. For instance, a local
polynomial regression estimator is noted to have a signifi-
cance reduction in bias andmean square errors as the sample
size increases.)e neural network estimator still remains the
estimator of choice compared to other estimators as sample
sizes increases.

)e estimator’s conditional performance was assessed
and compared to that of other finite population total esti-
mators in high-dimensional space that have been identified.
To do this, 1000 simple random samples were sorted using
the sample means of Xs value criterion. )e samples were
then grouped into sets of twenty samples such that the first
set is made of samples with the lowest sample means of Xs

values, the second set consists of samples with means of Xs

that are larger than the sample means of the first set, and so
on until the last set that consists of samples with the largest
sample means of Xs values. In each of the group, the bias,
mean square error, relative mean square error, and mean
absolute error were computed.

)e results of group conditional bias (CB), conditional
mean square error (CMSE), conditional relative mean
square error (CRMSE), and conditional mean absolute error
(CMAE) for the finite population total estimators TNN,
TMARS, TGAM, and TLP are plotted against group average
values X denoted as Xbar in the fifty groups of mean of Xs.

)e conditional findings for the estimators under the
two-dimensional linear model, two-dimensional quadratic
model, and three-dimensional mixed model are shown in
Figures 1–3. )e bias characteristics of the numerous esti-
mators differ significantly in the majority of circumstances.
A closer look at the plots reveals that TNN and TMARS have
lower levels of bias overall, as seen by the displayed curves’
proximity to the horizontal (no bias) line at 0.0 on the
vertical axis. Consequently, despite the complex structure of

Table 1: UBIAS, UMSE, URMSE, and UMAE for a two-dimen-
sional linear model.

Bias MSE RRMSE MAE

n� 4000

TNN 8.7982 151.4639 0.1900 0.0043
TMARS 9.8620 153.1423 0.2170 0.0048
TGAM 9.8700 152.9656 0.2172 0.0048
TLP 10.0203 156.9519 0.2205 0.0049

n� 8000

TNN 3.7104 20.7253 0.060 0.0011
TMARS 4.3909 29.5419 0.0779 0.0014
TGAM 10.4348 30.3327 0.4512 0.0041
TLP 13.1195 40.3936 0.2327 0.0080

Table 2: UBIAS, UMSE, URMSE, and UMAE for a two-dimen-
sional quadratic model.

Bias MSE RMSE MAE

n� 4000

TNN 3.3743 20.5077 0.0596 0.0011
TMARS 6.8289 76.5408 0.1206 0.0021
TGAM 20.0105 643.8682 0.3534 0.0062
TLP 18.1960 536.6546 0.3213 0.0057

n� 8000

TNN 1.9396 12.5319 0.0343 0.0006
TMARS 4.0274 25.4001 0.0711 0.0013
TGAM 12.4017 246.0122 0.2190 0.0039
TLP 11.3112 200.8425 0.1998 0.0035

Table 3: UBIAS, UMSE, URMSE, and UMAE for a three-di-
mensional mixed model.

Bias MSE RMSE MAE

n� 4000

TNN 3.5196 18.9278 0.0583 0.0010
TMARS 5.7422 52.2492 0.0951 0.0016
TGAM 14.7975 353.5178 0.2450 0.0041
TLP 16.8233 437.2852 0.2785 0.0046

n� 8000

TNN 1.8147 5.4731 0.0300 0.0005
TMARS 3.3823 18.3560 0.0560 0.0009
TGAM 8.8086 122.7989 0.1458 0.0024
TLP 9.9900 151.4552 0.1654 0.0027
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some of the plots, estimator TNN emerges as the least biased
for practically every set of auxiliary variable means and
distinct models.

Similarly, plotting conditional MSE vs. group means of
auxiliary variable means reveals that the estimators behave
in a similar way.)e lowestMSE values are produced by TNN
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Figure 1: CB, CMSE, CRMSE, and CMAE based on a two-dimensional linear model.
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Figure 2: CB, CMSE, CRMSE, and CMAE based on a two-dimensional quadratic model.
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and TMARS. TNN, for instance, has the lowest MSE of any of
the other estimators in the majority of circumstances. For
bias, MSE, andMAE, TNN consistently outperforms all other
estimators.

4. Conclusion

In this paper, the coverage properties of an estimator for
finite population total based on a feedforward back-
propagation neural network technique in nonparametric
regression have been studied.)e properties such as the bias,
mean squared error, and mean absolute error have been
computed for the case of high-dimensional datasets through
a simulation, and the findings were compared with those of
existing estimators such as multivariate adaptive regression
splines (MARS), generalized additive model (GAM), and
local polynomial (LP) which can handle high-dimensional
data.

From the results, the following observations and con-
clusions have been made:

(i) )e neural network estimator estimates the finite
population total better than all other robust esti-
mators in high-dimensional case.

(ii) )e performance of local polynomial estimator in
the estimation of finite population becomes poor as
the dimension of the data increases.

(iii) For all the estimators, as the sample sizes increases,
biases, mean square errors, relative root mean
square errors, mean absolute errors, and mean
absolute percentage errors decrease for the four
models considered.

(iv) For all the estimators, as the dimension increases,
biases, mean square errors, relative root mean
square errors, mean absolute errors, and mean
absolute percentage errors decrease for all the four
models considered.

To this end, the main conclusion is that the estimator of
finite population total based on the feedforward back-
propagation neural network has proved to yield results with
great precision, and therefore it is recommended for esti-
mating finite population total. It should be noted that the
proposed estimator has been considered in case of simple
random sampling without replacement (SRSWoR). An ex-
tension to other sampling techniques such as stratification
may be done since they rely on SRSWoR, and it is hy-
pothesized that efficiency will be improved compared to
other existing estimators in the literature.

Data Availability

)e data used are artificial data from simulation process
using a specified model.
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