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Abstract — Sample surveys concern themselves with drawing inferences about the population based on sample 
statistics. We assess the asymptotic normality behavior of a proposed nonparametric estimator for finite a 
population total based on Edgeworth expansion and Saddlepoint approximation. Three properties; unbiasedness, 
efficiency and coverage probability of the proposed estimators are compared. Based on the background of the two 
techniques, we focus on confidence interval and coverage probabilities. Simulations on three theoretical data 
variables in R, revealed that Saddlepoint approximation performed better than Edgeworth expansion. Saddlepoint 
approximation resulted into a smaller MSE, tighter confidence interval length and higher coverage probability 
compared to Edgeworth Expansion. The two techniques should be improved in estimation of parameters in other 
sampling schemes like cluster sampling. 
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I. INTRODUCTION  

In the estimation of the finite population total, misspecification of the model can lead to serious errors in an inference 
especially with regard to the non-sampled part of the population. In the recent past, efforts have been made to explore 
alternative ways to attenuate the errors. These include the use of nonparametric regression in evolving robust estimators in 
finite population sampling [1]. 

Non-parametric estimators have been found to be robust and more precise than their parametric counterparts. It is known, 
for instance, that a linear regression estimate will produce a large error for every sample size if the true underlying regression 
function is not linear and cannot be well approximated by linear functions [2].  

According to [3], the non-parametric regression estimator of a finite population total is a potent rival to familiar design-
based estimators. It has the quality of automaticity associated with design-based estimators, but can better reflect the actual 
structure of the data, yielding greater efficiency. It can be costly in computer power, and will probably not do as well as a 
parametric-model based estimator, when the modelling process is done carefully.  

Nonparametric regression has its origin in exploration of data. Let ,  be a data set, then a cloud of 
points is suggested. It may basically mean drawing a line in the   plane through the cloud of points showing the essential 
characteristics of the nature of relationship between the variables Y and X. In survey sampling, there are four estimation 
approaches that can be used in statistical investigations; the design-based approach, model-based approach, model-assisted 
approach and randomization-assisted approach [4]. 

  

II. BACKGROUND TO THE STUDY 

The model-based approach has bridged the gap between finite population problems and the rest of statistics. Before the 
model-based approach, finite population sampling was an eccentric realm where many of the basic concepts and tools of 
statistics were curiously inapplicable. Statisticians skilled in designing experiments and in applying linear models to make 
inferences from experimental and observational data found that finite population problems were apparently beyond the scope 
of their techniques [5] 

In the model-based approach, the distribution is a structure that is defined by the population itself and is unknown but can 
be modelled. The values of the variable Y are believed to be random variables;  generated by some model. The 
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actual observations for the finite population  are one realization of the random variables.  
The information obtained from the sample is used to predict the information of the non-sampled observations. An 

appropriate model-based estimator of the finite population total is of the form 
 

           (1) 

 
Where  . 

 
Reference [6] considered a related nonparametric model-assisted regression estimator, replacing local polynomial 

smoothing with penalized splines. They extended the local polynomial nonparametric regression estimation to two-stage 
sampling. In their work, simulation results indicate that the nonparametric estimator dominates standard parametric estimators 
when the model regression function is incorrectly specified, while being nearly as efficient when the parametric specification 
is correct. 

Reference [1] considered the application of nonparametric regression to the estimation of finite population error variance 

for a given sample drawn from the population. The error variance obtained by [6] was a function of  that are unknown. 

By considering the squared residual  and using some mild assumptions, their study showed that 

 implying that  is an asymptotic unbiased estimator of . They obtained an 

improved estimator of  by smoothing  for  being sample points  close to . Reference [7] 

used local polynomial regression in the estimation of finite population totals. In his research, he considered the equation 
 and applied the technique of using a strip of data around the co-variate in order to fit a line through 

the set of data . The estimator yielded better results in estimating the finite population total. Further, the estimator 

was found to be asymptotically unbiased, consistent and normally distributed when certain conditions were satisfied.  
 

III. METHODS 

A. Review of Edgeworth Expansion 
Let a random variable Y be the variable of interest and that X is an auxiliary variable associated with Y assumed to be 

known for all the observable population units. Let T be the population total such that . All the sampled units are 

observed and therefore there exist no error. The task is therefore to determine the characteristics of the non-sampled units  
. T is thus given by the total sampled units and the non-sampled units i.e. 

 
           (2) 

 
The information obtained from the sample is used to predict the information of the non-sampled observations. In this study, 

it is assumed that Y is function of X, hence a model of the form  
 

           (3) 
 
It is further assumed that   are the error terms which are normally identically and independently distributed wit  

and . Let  be independent and identically distributed (iid) random variables with mean 0 and 

variance . Define 

           (4) 

then the characteristics function of   is given by  
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        (5) 

 
Using the Taylor’s series expansion, (4) becomes 
 

      (6) 

 
Setting   to take care of kurtosis and  to take care of skewness, (6) simplifies to 
 

    (7) 

 
Using binomial expansion and from (4) and (6), 
 

        (8) 

 
By defining inversion of a function and incorporating the characteristic function, a function G(x) result into, 
 

      (9) 

 
where is a standard normal distribution,  is a normal distribution and 

 is the Edgeworth expansion. 

B. Review of Saddlepoint Approximation 
Saddle point approximation is remarkable because it usually provides probability approximations whose accuracy is much 

greater than the current supporting theory would suggest. Saddle point methods are also useful in avoiding much of the 
simulation requisite when implementing another modern statistical tool, the bootstrap. The most fundamental Saddle point 
approximation was first introduced by [8] and is essentially a formula for approximating a density mass function from its 
associated MGF. Assume that the functions are as regular as needed. In other words, when a derivative or an integral is assumed 
to exist then, the saddle point approximation arises from a natural sequence of approximations that become progressively more 
local.   

Suppose a continuous random variable X has density  defined for all real values of X, then the MGF of density  

is defined as the expectation of that is, 
 

          (10) 

 
over the values of S for which the integral converges. With real values of S, the convergence is always assured at s = 0: In 

addition, it is presumed that the M(S) converges over an open neighborhood of S designated as say (a, b). Consequently, the 
CGF of the function is defined as 

 
           (11) 

 
For a continuous random variable X with CGF K and unknown density f, the saddle point 
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density approximation to  is given as 
 

         (12) 

Where K'(s ̂) is the saddle point equation and s ̂ is the saddle point associated with the value x [9] 
To approximate the density of the total population total using saddle point approximation, consider finding the density 

of  which are iid with CGF K. In this approximation, the Saddle point density is the leading term of the 
asymptotic expansion as n→∞ of the function, f that is 

 

         (13) 

 

where is the relative error of the asymptotic order indicated such that; 

 

        (14) [10].  

C. The Proposed Estimators 
Let T be the population total, defined as the sum of the values of all the population measurements and let the random variable 

Y be the variable of interest and that X is an auxiliary variable associated with Y assumed to be known for all the observable 
population units. All the sampled units are observed and the task therefore is to estimate the non-sampled part of the population. 
The non-sampled part is estimated using the Edgeworth Expansion.  

Let S be the sample from the population of N units as in (2). Consider the model   where   m is an unknown 

smooth function that depends on the sampled data and is estimated by  for the non-sampled data points. 
The nonparametric estimator of the finite population total is proposed, 
 

          (15)  

 

Where   from (4) and 

          (16)  

Where  from (12) based on Edgeworth expansion and Saddlepoint approximation respectively. 

 

IV. RESULTS AND DISCUSSION 

Population of size 1,500 was simulated from three data variables; linear, quadratic and exponential. The linear, quadratic 

and exponential data variables which have the relations ,  and 

 respectively. 

The auxiliary variable X was assumed to be uniformly distributed in the interval [0,1] and  is assumed to be a standard 
normal variable defined as .  

A simple random sample of size 300 was selected randomly from the simulated population index-wise, and replicated 1500 
times giving rise to 1500 simple random samples as in [11] and [12]. The proposed estimator was therefore compared to the 
nonparametric regression estimator due to [5], the design-based Horvitz-Thompson estimator and the Ratio estimator using 
the amount of bias, MSE and the coverage probabilities. 
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A. Unconditional Properties 
1) Relative Bias of the Estimators 

The relative bias of the estimator was obtained using  where T is the actual population total and  is the 

estimator of the population total from the   sample, for .   
 

TABLE I: RELATIVE BIASES 
Model 𝑻"𝒏𝒑𝒔 𝑻"𝒏𝒑𝒆 
Linear 

Quadratic 
-14.566 
20.071 

21.402 
-10.420 

Exponential 19.315 -17.352 

 
From Table I, some of the values of the average relative biases are either negative or positive which shows either 

underestimation or overestimation respectively. For the linear function, the estimator based on Saddlepoint approximation 
performed better than Edgeworth expansion. For the quadratic and exponential distributions, the Edgeworth expansion 
performed better than the Saddlepoint approximation. 

2) Mean Squared Error (MSE) of the Estimators 

The measures for the MSEs were computed for the three data sets,  and then compared. 

 
TABLE II: MEAN SQUARED ERRORS 
Model 𝑻"𝒏𝒑𝒔 𝑻"𝒏𝒑𝒆 
Linear 

Quadratic 
0.1318 
0.1618 

0.1232 
0.1644 

Exponential 0.4084 0.4010 
 

From Table II, for the linear model, the estimator based on Edgeworth expansion performed better than Saddlepoint 
approximation. Similarly, Edgeworth expansion performed better in quadratic and exponential distributions.  

3) The 95% Confidence Interval Length 
The uncertainty in using point estimate is addressed by means of confidence intervals. Confidence intervals provide us with 

a range of values for the unknown population along with the precision of the method.  
The standard error necessitates the construction of the confidence interval. These give the probability to which the range of 

estimator covers the estimator of the parameter. A 95% confidence interval was therefore constructed such that  
 

           (17)  

 
For the extent of coverage of the estimator, the coverage probability was explored more explicitly by approximating  
 

         (18) 

 
where Φ(x) is the distribution of the estimator which is clearly a function of the variable characteristics and follows the 

standard normal distribution and O is an order function of the sample size n which is of order . 
The empirical results were tabulated in Table III. 
 

TABLE III: 95% CONFIDENCE INTERVAL LENGTHS 
Model 𝑻"𝒏𝒑𝒔 𝑻"𝒏𝒑𝒆 
Linear 

Quadratic 
12.0128 
12.9852 

12.953 
14.498 

Exponential 36.2789 36.002 
 
From Table III, for the linear and quadratic functions, the estimator based on Saddlepoint approximation outperformed the 

proposed estimator based on Edgeworth expansion. For the exponential distribution, Edgeworth expansion performed better 
than the Saddlepoint approximation method. 
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4) Coverage probabilities of the Estimator 
The coverage probabilities of the proposed estimator were computed using the nominal probabilities; 0.01, 0.05 and 0.10 

for the 99%, 95% and 90% confidence levels respectively. 
Apart from the 0.01 nominal probability in quadratic and exponential functions and 0.10 nominal probability in the 

exponential function, the Saddlepoint approximation outperforms the Edgeworth expansion in the estimation. Saddlepoint 
approximation therefore showed higher coverage rates. 

B. Conditional Properties 
1) Conditional Biases 
Since the estimation is model-based, the 1,500 simple random samples were grouped into groups of 50 so that there were 

30 groups. For each group  was computed and consequently   and   were also 

computed. The conditional bias for each group was computed as   and  where   is the population mean 

for the survey measurements and   is the sample mean for the auxiliary variables.  
The Fig. 1, 2 and 3 illustrate the behavior of the conditional bias for each estimator when the three mean functions were 

used. The Fig. 1 shows the conditional bias when linear mean functions was used, Fig. 2 shows the conditional bias when a 
quadratic mean function was used and Fig. 3 shows the conditional bias when an exponential mean function was used. 

 

 
Fig. 1. Conditional biases for the linear function. 

 
From Fig. 1, the proposed estimator due to Edgeworth expansion averagely performs better than the proposed estimator by 

Saddlepoint approximation. 

 
Fig. 2. Conditional biases for Quadratic Function. 

 
From Fig. 2, for the quadratic model used, the proposed estimator by Saddlepoint approximation gives better estimates of 

the population total compared to the proposed estimator by Edgeworth expansion. This may be attributed to the fact that 
Saddlepoint approximation has smaller bias compared to Edgeworth expansion. 
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Fig. 3. Conditional Biases for Exponential Function. 

From Fig. 3, the proposed estimator due to Saddlepoint approximation gave better estimates of the population total compared 
to those realized using the Edgeworth expansion. 

2) Conditional MSEs  
Just like the biases, conditional MSEs were determined in order to establish the robustness of the proposed estimator 

compared to the designed based, the ratio and the non-parametric Nadaraya-Watson (Dorfman’s) estimators. 
 

 
Fig. 4. Conditional MSE for linear model. 

 
From Fig. 4, the estimator based on Edgeworth expansion performs almost the same as Saddlepoint approximation with the 

Saddlepoint approximation giving smaller MSE for lower sample means. 

 
Fig. 5 and 6. Conditional MSE for Quadratic and Exponential models respectively. 
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From Fig. 5 and 6, the proposed estimator based on Saddlepoint approximation outperformed the proposed estimator based 
on Edgeworth expansion because in both cases, Saddlepoint approximation has smaller MSE. 

3) Conditional coverage properties 
Based on the conditional confidence intervals, the coverage probabilities were computed for the 30 samples. The coverage 

probability was based on the number of observations falling within the confidence interval compared to the total number of 
observations. From [11] and [12], the proposed estimator based on Saddlepoint approximation outperformed the one due to 
Edgeworth expansion in all the three theoretical data variables. 

 

V. CONCLUSION 

The proposed estimator based on Saddlepoint approximation performed better than Edgeworth expansion. This is probably 
due to the fact that Saddlepoint approximation is a compound of the Edgeworth expansion and therefore the average accuracy 
and precision in its estimation of the finite population total. 
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