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ABSTRACT 

Statisticians use survey sampling methods in the estimation of population parameters of interest. 

This field has received increased demand due to the reliable statistic they produce. Information 

is extracted from the samples and used to make inferences about the population and used for 

planning purposes. This information is collected either by survey sampling or census. However, 

census is an expensive and tedious method to carry out in the estimation process thus preferring 

survey sampling in estimation. In survey sampling, estimation can be either parametric or 

nonparametric. In nonparametric, estimation of finite population total divides into the sampled 

and non-sampled parts. Estimation of the sampled part is quite easy thus the problem reduces to 

the estimation of non-sampled part. Different approaches have been used by statisticians in the 

estimation of the non-sampled part. These approaches have however relied on the use kernel 

smoothers and has been known to suffer the problem of boundary bias. In this study, a 

nonparametric estimator for a finite population total that addresses this drawback of kernel 

smoothers is proposed. The properties of this estimator were studied empirically in order to 

determine its efficiency. The estimator was applied to a simulated data and comparative analysis 

was done using R statistical software version i386 4.0.3 and the results of the bias were 

confirmed. The performance of the proposed estimator was tested and compared against the 

design-based Horvitz-Thompson estimator, the model-based approach proposed by Dorfman 

and the ratio estimator. The proposed estimator was developed by modifying the Nadaraya-

Watson kernel estimator using two boundary bias reducing techniques. The bias, variance and 

Mean Squared Error of the estimator were studied theoretically and applied to an empirical study 

out using simulated data from linear, quadratic and exponential mean functions. Both the 

unconditional and conditional properties of the estimators under the three mean functions were 

investigated. The proposed estimator outperformed the ratio estimator, Horvitz-Thompson 

estimator and the estimator due to Dorfman in quadratic and exponential mean functions. This 

is evident from the small biases and mean squared error values obtained. For the linear mean 

function, the ratio estimator gave the best estimates because it is (BLUE). Therefore, the 

proposed nonparametric estimator for a finite population total was developed, the asymptotic 

properties were studied and comparative analysis done using simulated data. From the results 

obtained, the proposed estimator was found to give smaller biases and therefore can be 

recommended for bias correction at the boundary. The proposed estimator in this study is based 

on stratified sampling, thus a study using cluster sampling is recommended to compare the 

performance of the estimator and further research to improve the estimator to work for all 

theoretical data variables. 
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CHAPTER ONE 

1.1   Introduction 

This chapter focuses on the background of the study, statement of the problem and the objectives. 

It also brings to our view the significance and scope of the study. 

1.2   Background of the Study 

The intensions of surveys are not only in estimating population target parameters, but also in the 

estimation of subpopulation characteristics. These subpopulations are commonly referred to as 

domains or areas. The term small area is used to denote a small demographic group, for example 

a small group characterized by social economic status or age-sex/ethnicity group. Thus, in 

sample survey, researchers extract information from samples and use such information in 

making inference about some population quantities such as the mean, proportion or totals. The 

collection of information can be done either by the use of sampling methods or census. However, 

census is a tedious and expensive method as it entails complete enumeration of individuals or 

units contained in a population. Therefore, statisticians rely on the use of sampling methods 

which involve the selection of a sample from a population of interest and use information 

obtained from such samples to get estimators of the whole population (Cochran, 1977).    

In survey sampling, the estimation of finite population quantities of interest such as the 

proportions, averages or totals can be done using nonparametric regression method. 

Nonparametric regression method was introduced early on in the studies by (Nadaraya, 1964) 

and (Watson, 1964). According to (Dorfman, 1992), estimators obtained using nonparametric 

regression method are considered to be more flexible and robust as compared to the estimators 

based on parametric regression methods. In sample survey, researchers use auxiliary information 

in estimating finite population parameters of interest. However, the use of auxiliary information 

in estimation of parameters is a key problem in sample surveys. To address this problem, 
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statisticians assume a working super population model to describe the relationship between the 

auxiliary variable X and the study variable Y (Dorfman, 1992). This super population working 

model is used in the prediction of the non-sampled part of the population (Sanchez-Borrego & 

Rueda, 2009) 

In sampling survey, areas with small sample sizes are commonly referred to as small areas. This 

field of small area estimation in survey sampling has gained more attention over the years 

because of greatly increasing demand for reliable small area statistics from both public and 

private sectors. Small area statistics are very important in Government agencies around the world 

as they are used in program development, allocation of various funds and in regional and city 

planning and more so in other policies of the government, for example Bureau of labor Statistics 

and Census Bureau in the United States, Ministry of Social Development of Chile, National 

Administrative Department of Statistics Colombia and many others. Additionally, these area 

statistics are also important in industries and private sector policy making of businesses since 

they rely on local social-economic conditions. The demands are attributed to the significant 

advances in statistical data processing and powerful statistical methods for the analysis of local 

area data (Fay & Herriot, 1979; Kriegler & Berk, 2010). 

Small area estimation has been accepted widely in recent years and this has led to the 

development of different models, studied and applied. According to (Pfeffermann, 2013), (Rao, 

2003; 2013), and Rao and (Molina, 2015) there has occurred several advances in methodologies 

used in small area estimation from its start to the present. Small area estimation methodology 

can be categorized into two types, design-Based approach, for example synthetic, composite and 

direct estimators and model-based approach for example, unit-level model and area-level model. 

In Design-Based techniques, there is no existence of models. The estimates of direct survey for 

small domains here gives out large standard errors (Rao, 2003; 2013).  Therefore, in the 

construction of estimators, it becomes necessary to borrow strength from related areas through 
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linking models based on auxiliary data such as administrative archives and census data to find 

more accurate estimates for a given area. On the other hand, in Model-Based or Model-

Dependent techniques, the inference is made according to the underlying model. In the attempt 

to compare the two approaches, (Pfeffermann, 2002; 2013) in his study recommends the use of 

Model-Based method since the estimators in this approach are more accurate and predictions of 

non-sampled areas can be done. In addition, Design-Based method has got roles in Model-Based 

approach as it is the input data for the model under Area-Level model. It can also be used to 

assess the model predictors. 

In this study, we consider a nonparametric estimation of finite population total with a hybrid 

method working on the basis of stratified sampling. Generally, it is good for every small area to 

be included in the sample. In order to achieve this, we need to have independent stratification 

within the small areas. Nonparametric regression approach has been preferred mostly by 

researchers due to their standing out results which other approaches have failed. The motivations 

behind nonparametric regression according to (Härdle, 1994) include; It provides a tool for 

finding spurious observations by studying the influence of isolated points. Secondly, it gives 

predictions of observations yet to be made without reference to a fixed parametric model. 

Thirdly, it provides a versatile method for exploring a general relationship between two variables 

and lastly, it constitutes a flexible method for substituting for missing values or interpolating 

between adjacent independent random variable values. 

1.3  Statement of the Problem 

According to (Dorfman, 1992), researchers are basically faced with the challenge of estimating 

population parameters of interest such as totals, means or even the distribution function of the 

population. To enhance the performance of the estimators, the available auxiliary information is 

used. Estimation of population total in nonparametric regression divides into the sampled part 

and non-sampled part. Estimation of the sampled part is easy thus the problem reduces to the 
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estimation of non-sampled part. The use of auxiliary information to the non-sampled part of the 

population could lead to misspecifications during the choice of models. Different nonparametric 

methods have been employed by researchers in the estimation. However, estimation of the 

quantity of interest in nonparametric regression relies on the use of kernel smoothers which is 

an approach used to develop robust estimators (Breidt & Opsomer, 2009). These kernel 

smoothers are known to suffer the problem of boundary bias.  Therefore, a way of improving the 

nonparametric regression estimation is necessary. (Lang’at et al, 2019) used a modified NW 

estimator under reflection technique to address the boundary problem associated with the 

estimator. In this study, a nonparametric regression estimator for a finite population total that 

addresses the boundary bias problem is proposed composing a composite of data transformation 

and reflection techniques.  

1.4   Objectives of the Study 

1.4.1 General Objective 

To propose a nonparametric estimator for a finite population total under stratified random  

sampling incorporating a hybrid of data transformation and reflection techniques. 

1.4.2 Specific Objectives 

The study was anchored on the following four objectives; 

i. To propose a nonparametric estimator for a finite population total based on employing a 

hybrid of data transformation and data reflection. 

ii. To study the properties of the proposed estimator  

iii. To apply the proposed estimator to a simulated data. 

iv. To compare the performance of the proposed estimator with the Horvitz-Thompson 

estimator, ratio estimator and the estimator due to (Dorfman, 1992) 
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1.5   Significance of the Study. 

The study of nonparametric regression estimation in sample survey is an important field in 

statistics. It provides the techniques for estimating the population parameters by the use of 

samples obtained from the population of interest. Therefore, this study is of great importance 

towards development the mathematical and statistical knowledge in survey sampling. Thus, the 

results of this study are pivotal in government agencies in the implementation of policies and 

planning of various sectors of the economy and even the private sector in their prediction. 

In their work, statisticians usually endeavor to have unbiased estimators of the target parameters. 

However, from the previous studies done by researchers over the years, the attainment of such 

estimators still remains a challenge to be catered for. Majority of the obtained estimators suffer 

from the problem of boundary biases. In this study, an estimator for finite population total with 

minimal bias is proposed and does not suffer from the boundary problems significantly. 

Therefore, this is in turn an important study to statisticians as they are ever keen on having 

estimators that are of high precision.  

1.6   Scope of the Study                 

This research project presents a nonparametric regression estimator for a finite population total 

with a modified kernel smoother that incorporates a hybrid of data transformation and reflection 

techniques under model-based framework. The asymptotic properties of the proposed estimator 

have been studied empirically and analytically. The estimator was applied to a simulated data 

and the performance of the proposed estimator was compared against the population total 

estimator by Horvitz-Thompson, the ratio estimator and the estimator proposed by (Dorfman, 

1992) using the unconditional bias, conditional bias and the Mean Squared Error obtained from 

a simulated data using some selected theoretical data variables. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

In order to have estimators of finite population parameters which are of high precision in sample 

surveys, statisticians employ the use of auxiliary information. This chapter reviews the relevant 

literature on the studies that have been done so far in relation to nonparametric estimations of 

finite population parameters. 

2.2 Nonparametric Regression 

The idea of data exploration using nonparametric regression methods has history of introduction. 

A regression model summarizes the relationship between two variables X and Y by quantifying 

the contributions of the explanatory variable X to the survey variable Y. This relationship is 

modelled as  

                      𝑌𝑖 = 𝑚(𝑋𝑖) + 𝜀𝑖                                                                                                 (2.1) 

𝒀𝒊 Variable of interest 

𝒎 An unknown function to be determined using the sample data 

𝑿𝒊 Auxiliary variable 

𝜺𝒊 Error term assumed to be 𝑁(0, 𝜎2) 

 

 for n data points.  

  There are four main approaches used in the estimation of finite population totals in sample 

surveys; model-based approach, design-based approach, model-assisted approach and design-

assisted approach. 
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2.3 Review of the Approaches. 

2.3.1 Design-Based Approach 

In this approach, the observed values of the variable of interest say Y given as 𝑦1,𝑦2, … >, 𝑦𝑛 of 

the target population are viewed as unknown but fixed constants. This implies that the sample 

measurements of the samples drawn from the finite population are used in the estimation of the 

population parameter of interest. That is, the sample selection probabilities are used to provide 

the basis for inference. This approach is also referred to as the Classical/Randomization theory. 

Randomization theory in a manner, gives a nonparametric approach to inference where 

assumptions about the distribution of the random variables are not made (Lohr, 2021). According 

to (Horvitz and Thompson, 1952), the design-based expansion estimator of the population total 

is thus given as, 

                             𝑇̂𝐻𝑇 = ∑
1

𝜋𝑖
𝑖𝜖𝑠 𝑦𝑖                                                                                           (2.2) 

Where πi is the inclusion probability given as, 𝜋𝑖 =
𝑛

𝑁
 

 Statisticians rely on this approach due to its ability of removing biases during sample selection 

and usage in cases where not much is known about the population. Here researchers focus on 

having design-unbiased methods of estimation and apply less effort on the nature of the 

population itself. This approach shows the way the sample is selected and thus the distribution 

is well known because it is established on the population by the designer. 

However, the major drawback of this approach is the assumption that all the samples in the 

population are selected which is impossible due to the problems associated with the selection of 

samples (Godambe, 1955). Therefore, optimality and robustness cannot be achieved 

simultaneously under this approach. 



8 
 

2.3.2 Model-Based Approach 

In the model-based approach, the distribution is a structure existing in the population itself and 

is unexplored but capable of being modelled. In this forecast approach, the expectations are over 

all possible realizations of a linear regression stochastic model linking the study variable Y with 

a set of auxiliary variables X.  In model-based approach, the actual values for the finite 

population 𝑦1, 𝑦2, … , 𝑦𝑛 are treated as the realizations of the random variables 𝑌1, 𝑌2, . . , 𝑌𝑁. In 

the presence of auxiliary information, statisticians assume a working superpopulation model to 

describe the relationship between the variable of interest and the set of auxiliary variables. We 

assume that Y is a function of X, hence we have the model 

 𝑌𝑖 = 𝑚(𝑋𝑖) + 𝜀𝑖 

for i=1, 2, …., N where 𝑚(𝑋) is a smooth function and ei are assumed to be normally identically 

and independently distributed error component terms with mean zero and a finite variance. Here, 

the estimator of the population total is given as 

                𝑇̂ = ∑ 𝑌𝑖
𝑁
𝑖=1                                                                                                                 (2.3) 

which can be written as 

                𝑇̂ = ∑ 𝑌𝑖 + ∑ 𝑌𝑖𝑖𝜖𝑝−𝑠𝑖𝜖𝑠                                                                                            (2.4) 

 where the first part represents the sampled proportion and the second part represents the non-

sampled proportion. The prediction of the non-sample part relies on the information obtained 

from the sample part. According to (Dorfman, 1992), the non-sampled part is estimated 

nonparametrically to give the model-based estimator of finite population total as, 

                  𝑇̂ = ∑ 𝑌𝑖 + ∑ 𝑚̂(𝑋𝑖)
𝑁
𝑖∉𝑠

𝑁
𝑖𝜖𝑠                                                                                        (2.5) 

Where 𝑚̂(𝑋𝑖) = ∑ 𝑤𝑖(𝑥)𝑌𝑖𝑖 . 
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2.3.3 Model-Assisted Approach 

This is a well-known approach that includes auxiliary information into the design-based 

estimation of finite population total. It works under the assumption of the existence of a 

superpopulation model between the auxiliary variable and the variable of interest for the 

population to be sampled.  

Here, the model is used in improving the efficiency of the estimators and the estimators remain 

design consistent even when the model is incorrect. That is, inferences basically are design-based 

while the model serves as a way of helping choose between the randomization-based methods 

(Lang’at et al 2007). Due to their potential of improving the precision of the survey estimators 

in the availability of appropriate auxiliary information, these models are required to be linear or 

have a known parametric shape (Chaudhuri and Stenger, 2005). The model-assisted estimator of 

the finite population is given as,  

                  𝑇̂ = ∑ 𝑦̂𝑖 + ∑ (𝑦𝑖 − 𝑦̂𝑖)𝜋−1
𝑖𝜖𝑠𝑖𝜖𝑈                                                                              (2.6) 

Where the first part represents the predicted values over the population and the second part 

represents the sample mean of residuals or the estimate of bias over the sample units and π is the 

inclusion probability. 

In this study, we considered a model-based approach because it gives out consistent results 

compared to the other approaches. Additionally, model-based approach is the best option since 

we need results that are both optimal and robust. 

In the following subsection we review different studies that have been carried out using these 

approaches in nonparametric regression. 

2.4 Review of Selected Nonparametric Estimators 

The idea of nonparametric estimation methods was first introduced by (Nadaraya, 1964) and 

(Watson, 1964). It was introduced in the estimation of a regression curve using the model  
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Y= m(𝑥𝑖) + 𝛿(𝑥𝑖)𝑒 where m(x) is the smoothing function, e is a random error component with 

a mean of zero and a  constant finite variance. The objective of their paper was in estimating the 

smoothing function m(x). The N-W estimator of the smooth function is given by  

                  𝑚̂(𝑥) = ∑ 𝑤𝑖(𝑥)𝑦𝑖𝑖𝜖𝑠                                                                                                (2.7) 

(Dorfman, 1992), used a nonparametric regression estimator for finite population totals based 

on a sample drawn from a population using a simple kernel estimator. He used the N-W weights 

in obtaining the Nadaraya-Watson estimator. Simulation studies carried out found that the 

estimator is more efficient than the design-based estimators and if the bandwidth is larger, the 

density function becomes broader and flatter, the more equal are the weights and the smoother 

the estimated function. (Orwa et al, 2010) proposed a nonparametric regression approach of a 

finite population total in model-based framework in the case of a stratified sampling. The 

estimator was based on the modified N-W kernel estimator and it led to relatively small error.  

(Breidt and Opsomer, 2000) considered nonparametric method on with a design-based approach. 

They used the local polynomial regression estimator for unknown regression function 𝑚(𝑋) 

which is used as a generalization of the ordinary generalized regression estimator. Their 

assumption was that m(x) is a smooth function of x and used the model to obtain design-unbiased 

and consistent estimators of the finite population total. (Ombui, 2008) used local polynomial in 

estimating finite population parameters.  

(Kim et al, 2009) adapted the (Breidt and Opsomer, 2000) local polynomial nonparametric 

regression estimation to two-stage cluster sampling. A probability sample of clusters is drawn 

from the population of clusters according to a fixed size design and then subsamples of every 

sampled cluster were obtained. They assumed that the inclusion probabilities were strictly 

positive and the variance and independence of the two-stage design. The two-stage design is 

frequently used because an adequate frame of elements is not available or would be prohibitively 
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expensive to construct, but a listing of clusters is available. The results from the simulation study 

found that nonparametric methodology compares favorably with Horvitz-Thompson and 

classical survey estimates. (Syengo, 2018) considered local polynomial regression under 

stratified random sampling in the estimation of finite population totals. The population of interest 

is divided into strata, a simple random sample is selected without replacement from a stratum 

and the size of the sample should be sufficiently large. The estimates of the study were found to 

be asymptotically unbiased and consistent. 

(Breidt and Opsomer,2005) considered a nonparametric design-based regression estimator based 

on penalized splines. He suggests that they can be used to improve the efficiency of estimators 

in situations where linear models are not appropriate and are also easy to be incorporated into 

more complicated models like the additive semiparametric models. (Zheng and Little, 2003) in 

their paper used penalized splines under model-based approach to estimate finite population 

totals.  

2.4.1 Reflection of Data Method 

Reflection method is a statistical technique that was introduced early on by scholars. The basic 

idea in this method is to reflect the data points at the origin and work with them. It is used in the 

reduction of bias problems encountered at the boundaries. If certain conditions were not fulfilled, 

reflection does not yield satisfying results always as it contains a bias of order h. 

(Schuster, 1985) used reflection of data method in density estimation. This method was used as 

a technique of reducing the boundary bias. To add on, (Alberts & Karunamuni, 2006) reviewed 

the use of data reflection method in their study on the methods of boundary correction in kernel 

density estimation. 

(Lang’at, 2017) studied robust estimation of finite population total in nonparametric regression 

incorporating data reflection method. The estimator was under model-based framework. He 
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found out that a good number of kernels have the suitable features for application. The estimator 

found reduced the boundary bias significantly thus it was superior than all other apart from where 

the ratio estimator dominated in linear model. In their study (Lang’at et al, 2019), explored 

nonparametric estimation of finite population total under model-based framework. They used 

kernel smoother in the construction of the estimator. However, this estimator suffers boundary 

problems which they catered for by modifying it by the use of reflection technique. This 

estimator was found to be favorably okay compared to other estimators. 

2.4.2 Transformation Method 

This technique was introduced in a study by (Wand et al, 1991). Here, one can take a one-to-one 

function which is continuous and then a regular kernel estimator is used with the transformed 

data. 

(Karunamuni and alberts, 2005) applied transformation method in their study and the estimator 

was found to be locally adaptive and non-negative if the kernel function was non-negative. Their 

approach had a high potential of producing better estimators. Also, (Karunamuni and Alberts, 

2006) applied a locally adaptive transformation method of boundary correction in kernel density 

estimation. The method was computationally easy and convenient. They found out that the 

amount of transformation was dependent upon the estimation point. Their estimator depends on 

the density function applied. (Bii et al, 2020) used a transformation of data method in estimating 

finite population mean. They concluded that their proposed estimator provided a better 

estimation of the mean of a finite population compared to other estimators. (Bii et al, 2019) 

studied boundary bias correction using weighting method in two stage cluster sampling. A a 

modified transformation of data method was used in the estimation. Their estimator was found 

to produce estimates that were closer to the true population values being estimated. 
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In this study, we applied the hybrid of the two methods in the estimation of finite population 

total and its performance was compared against the other existing estimators such as the ratio 

estimator which is the Best Linear Unbiased Predictor (Cochran, 1977) given as,  

             𝑇̂𝑅 = 𝐵̂ ∑ 𝑋𝑖
𝑁
𝑖=1                                                                                                          (2.8) 

Where 𝐵̂ =
∑ 𝑦𝑖

𝑛
𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1

 , represents the estimator for the population parameter, ∑ 𝑦𝑖
𝑛
𝑖=1  represents the 

sample total of the study variable and ∑ 𝑥𝑖
𝑛
𝑖=1  represents the estimator of the auxiliary variable 

assumed to be known for the population. Population total for this auxiliary variable is given as 

∑ 𝑋𝑁
𝑖=1 i. 

The design-based Horvits-Thompson estimator proposed by (Thompson, 1952) given by,  

              𝑇̂𝐻𝑇 = ∑ 𝜋𝑖
−1𝑦𝑖𝑖𝜖𝑠                                                                                                        (2.9) 

Where πi represents the inclusion probability. 

and the model-based nonparametric estimator proposed by (Dorfman, 1992) given by, 

                  𝑇̂𝑛𝑝 = ∑ 𝑦𝑖 + ∑ 𝑚̂𝑁𝑊(𝑥𝑖)
𝑁
𝑖=𝑛+1

𝑛
𝑖=1                                                                          (2.10) 

Where the first part represents the sample proportion and the second part represents the 

Nadaraya-Watson estimator. 

2.5 Research Gap 

Several studies have been carried out using various nonparametric regression methods to 

estimate the finite population totals. However, these regression methods have applied kernel 

smoothers to estimate the regression functions and the smoothers are known to suffer the 

problem of boundary bias and different researchers have worked out to come up with estimators 

to address the problem. Different methods of reducing boundary problem including the reflection 
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have been used to come up with estimators of finite population total but a hybrid method has not 

been covered. 

This study focuses on the removal of the boundary bias significantly by the use of a hybrid of 

data transformation and data reflection technique to the nonparametric estimation for finite 

population total since it’s an area that has not been explored.                                              
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1.  Introduction 

The general objective of the study was to propose a nonparametric estimator for finite population 

total using a hybrid of data reflection and transformation of data under model-based framework. 

This chapter introduces some of the basic terminologies used in statistics and then we focused 

on the methods of estimating finite population totals using a hybrid of data-reflection and 

transformation technique nonparametrically.  

3.2.  Finite and Infinite Population 

Basically, population can be categorized into two types, which is the finite and infinite 

population. In finite population, it is possible to enumerate the total number of individuals or 

units it contains. On the other hand, in infinite population it is not possible to enumerate the total 

number of units or individuals contained in the population.  

3.3.  Sources of Data 

In this study, the data for testing the efficiency of the proposed estimator was obtained through 

simulation in R statistical package. 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be random samples and 𝑦1, 𝑦2, … , 𝑦𝑛be the study variables. The random 

variables were used in generation of the artificial data set. We employed different models in the 

simulation of the data which include, the linear model, quadratic model and the exponential 

theoretical models. Simulation is a method of getting computer generated data through 

experiments by random sampling. However, the strength of simulation is its ability in 

understanding the behaviors of statistical methods.  
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3.4.  Review of Estimation Methods 

Let 𝑋1, 𝑋2, … , 𝑋𝑁  be independent and identically distributed random variables with continuous 

distribution function. Further, let there be a sample of size n and a kernel function k which is 

symmetric around the origin. Therefore, the standard kernel density estimator is given as; 

                  𝑚̂(𝑋𝑖) =
1

𝑛ℎ
∑ 𝑘𝑘

𝑖=1 (
𝑥−𝑋𝑖

ℎ
)                                                                                       (3.1) 

Where h is the bandwidth and k is a non-negative integrable smoothing kernel. 

3.4.1 Data Reflection Technique 

Data reflection is one of the methods used in boundary bias reduction. In our study, we proposed 

transformation in corporation with reflection technique to address the problem of boundary 

biases. 

Let {(𝑋1, 𝑌1), (𝑋2, 𝑌2), … , (𝑋𝑛, 𝑌𝑛)} be the set of n observations from the sample. Under 

reflection of all the points in the boundary, the data increases in number to give the new set of 

data of the form, {(𝑋1, 𝑌1), (−𝑋1, −𝑌1), (𝑋2, 𝑌2), (−𝑋2, −𝑌2), … , (𝑋𝑛, 𝑌𝑛), (−𝑋𝑛, −𝑌𝑛). 

Therefore, the kernel estimate obtained from this estimate is of size 2n. The standard kernel 

estimator for this method is written as 

                     𝑚̂𝑅(𝑥) =
1

2𝑛ℎ
∑ 𝑘 (

𝑥−𝑋𝑖

ℎ
),    2𝑛

𝑗=1 x 𝜖 ℝ                                                                     (3.2) 

This can be written as, 

                    𝑚̂𝑅(𝑥) =
1

𝑛ℎ
∑ {𝑘 (

𝑥−𝑋𝑖

ℎ
) + 𝑘(

𝑥+𝑋𝑖

ℎ
)}𝑛

𝑖=1 x≥0                                                        (3.3) 

3.4.2 Transformation of Data Method 

We assumed m has unknown probability density function with support [0, ∞) Consider a random 

sample of 𝑥1, 𝑥2, … , 𝑥𝑛 from m used in estimating m. The idea behind transformation is based 

on transforming the original data 𝑋1, 𝑋2, … , 𝑋𝑁 through a function g to obtain a transformed data 
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given as 𝑔(𝑋1), 𝑔(𝑋2), … , 𝑔(𝑋𝑁). Here, g is a positive, continuous and monotonically increasing 

function. From the standard kernel estimator, the transformed kernel density estimator is of the 

form,  

                     𝑚̂𝑇(𝑥) =
1

𝑛ℎ
∑ 𝑘 (

𝑥−𝑔(𝑋𝑖)

ℎ
)𝑛

𝑖=1                                                                                 (3.4) 

Where h is the bandwidth and k is a symmetric positive kernel function. 

3.4.3 The Proposed Estimator 

Following the standard form of the kernel estimator, a nonparametric estimator of finite 

population is proposed. The proposed hybrid method was obtained by combining data 

transformation and data reflection techniques to come up with the superior method of estimation 

of the kernel estimator. Given the two formulas,  𝑚̂𝑅(𝑥) =
1

𝑛ℎ
∑ {𝑘 (

𝑥−𝑋𝑖

ℎ
) + 𝑘(

𝑥+𝑋𝑖

ℎ
)}𝑛

𝑖=1  and  

𝑚̂𝑇(𝑥) =
1

𝑛ℎ
∑ 𝑘 (

𝑥−𝑔(𝑋𝑖)

ℎ
)𝑛

𝑖=1 , we attain the proposed estimator by combining the two to have, 

                    𝑚̂𝑅𝑇(𝑥) =
1

𝑛ℎ
∑ {𝑘 (

𝑥−𝑔1(𝑋𝑖)

ℎ
) + 𝑘 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)}𝑛

𝑖=1                                                   (3.5) 

Where h is the bandwidth, k is the kernel function, 𝑔1𝑎𝑛𝑑 𝑔2 are transformations that were 

determined. For convenience it was assumed that 𝑔1 = 𝑔2 for this study. 

3.5.  Estimation of Finite Population Totals 

Here the procedure for finite population totals estimation is presented. We assume that we have 

𝑈1, 𝑈2, … , 𝑈𝑁 sampling units corresponding to the survey measurements 𝑌1, 𝑌2, … , 𝑌𝑁 so that the 

population total denoted by T is defined as 

                            T=∑ 𝑌𝑖
𝑁
𝑖=1                                                                                                        (3.6)                 

We use the model  

                              𝑌𝑖 = 𝑚(𝑋𝑖) + 𝑒𝑖                                                                                         (3.7) 
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as the estimator of the equation (3.6) since it’s the simplest equation that describes the 

relationship between the auxiliary variable and the study variable. Suppose the auxiliary 

information 𝑋1, 𝑋2, . . , 𝑋𝑁 is available for these Yi’s and are to be considered in the estimation 

process. Then the equation takes the prediction form  

                              T=∑ 𝑌𝑖 + ∑ 𝑌𝑖𝑖∉𝑠𝑖𝜖𝑠                                                                                       (3.8)  

Where the first part presents the truly sampled proportion and the second part presents the 

proportion to be estimated using the auxiliary information available. Several estimation methods 

have been used to address the problem. An estimator of the form  

                                  𝑇̂ = ∑ 𝑌𝑖 + ∑ 𝑌̂𝑖𝑖∉𝑠𝑖𝜖𝑠                                                                                 (3.9) 

is looked at in this study. To the unobserved part of the equation, we use equation (3.7) and the 

equation takes the form 

                                     𝑇̂ = ∑ 𝑌𝑖 + ∑ 𝑚(𝑥)𝑖∉𝑠𝑖𝜖𝑠                                                                      (3.10) 

 Now the task reduces to estimating the second part of the equation. To tackle this, we used a 

hybrid formula incorporating data transformation and reflection techniques which leads to the 

proposed estimator given as, 

                          𝑇̂𝑅𝑇 = ∑ 𝑌𝑖 + ∑ {
1

𝑛ℎ
∑ [𝑘 (

𝑥−𝑔1(𝑋𝑖)

ℎ
) + 𝑘 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)]𝑛

𝑖=1 }𝑖∉𝑠𝑖𝜖𝑠                       (3.11) 

In the estimation process, the data was first transformed using the quadratic function given as 

𝑔(𝑥) = 𝑥2 + 2𝑥 + 2. Where 𝑔(𝑥) is non negative continuous and monotonically increasing 

quadratic function. Secondly, the transformed data was then reflected and the analysis done.                                                                                      

The efficiency and unbiasedness of the estimator were tested both analytically and empirically. 
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3.6.  The Big “Oh” and Little “oh” Notations 

Given two functions 𝑓(𝑥) and 𝑔(𝑥) of a real variable 𝑥 considered as 𝑥 → ∞, the expression 

relating the two functions for sufficiently large 𝑥 is given as; 

𝑓(𝑥) = 𝑂(𝑔(𝑥))                                                                                                (3.12) 

This implies that, there exists a constant 𝑎 and 𝑥𝑜 such that 

|𝑓(𝑥)| ≤ 𝑎|𝑔(𝑥)|     for 𝑥 ≥ 𝑥𝑜                                                                         (3.13) 

If the equality holds, then 𝑓(𝑥) is said to be of 𝑂(𝑔(𝑥)). 

Consequently, 

𝑓(𝑥) = 𝑜(𝑔(𝑥))     as 𝑥 → ∞                                                                            (3.14)                                                             

This implies that 𝑔(𝑥) ≠ 0 for sufficiently large 𝑥 and lim
𝑛→∞

𝑓(𝑥)

𝑔(𝑥)
= 0 

If the relation holds, then 𝑓(𝑥) is said to be of smaller order than 𝑔(𝑥) . This is as reviewed by 

(Cormen et al, 2022) in introduction to algorithms. 

3.7.  Properties of the Proposed Estimator 

In the estimation process, the properties of the proposed estimator are desirable. According to 

(Tsybakov, 2008), efficiency and bias are key properties of estimators that statisticians should 

be eager to investigate as they measure the amount of accuracy and precision of estimators. But 

efficiency is a function of variance, thus we end up studying variance and bias. The Mean 

Squared Error (MSE) is used as the basic measure of accuracy that accounts for both the bias 

and variance of an estimator at an arbitrary fixed point. 

3.8.Bias of the Proposed Estimator 

Theorem 1  

The assumptions used by (cowling and hall, 1996) are used in deriving the bias and variance of 

the proposed estimator. Assume the transformation 𝑔𝑖 i=1,2 is non-negative continuous and 

monotonically increasing functions defined on [0,∞). Further, assume that 𝑔𝑖
−1 exists 𝑔𝑖(0)=2, 

𝑔𝑖
′(0)=2 and that 𝑔′′ and 𝑔′′′ and are continuous on [0,∞) where 𝑔𝑖

(𝑗)
 denotes the jth derivative 
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of 𝑔𝑖 with 𝑔𝑖
(0)

=𝑔𝑖 and 𝑔𝑖
−1 denoting the inverse function of 𝑔𝑖, i=1,2. Suppose that mj is the jth 

derivative of m and that it exists and is continuous on [0,∞), j=0,1,2 with 𝑚(0)=m. Furthermore, 

let x =ch where 0≤ 𝑐 ≤ 1. Assume the kernel function k is non-negative symmetric function 

with support [-1,1] such that it satisfies  

               ∫ 𝑘(𝑡)𝑑𝑡 = 1,          ∫ 𝑡𝑘(𝑡)𝑑𝑡 = 0,     𝑎𝑛𝑑  0 < ∫ 𝑡2𝑘(𝑡)𝑑𝑡 < ∞                            (3.15) 

that is, K is a kernel of order 2.  

The bias of the proposed estimator is given as; 

𝐸[𝑚̂𝑅𝑇(𝑥𝑖)] − 𝑚(𝑥)  

Proposition 3.1 

Bias(𝑇̂𝑅𝑇) =
𝑁−𝑛

𝑛
{2ℎ [2𝑚′(0) ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡 −

1

𝑐
𝑔1

′′(0)𝑚(0) ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡  −
1

𝑐

𝑔2
′′(0)𝑚(0) (𝑐 + ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡

1

𝑐
)] +

2ℎ2

2
[−𝑐2𝑚′′(0) + 𝑚′′(0) ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡 −

1

−1

[𝑔1
′′′(0)𝑚(0) + 3𝑔1

′′(0){2𝑚′(0) − 𝑔1
′′(0)𝑚(0)}] ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡 −

1

𝑐

[𝑔2
′′′(0)𝑚(0) + 3𝑔2

′′(0){2𝑚′(0) − 𝑔2
′′(0)𝑚(0)}] ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡

𝑐

−1
]} + 𝑜(ℎ2)                    

                                                                                                                             (3.16) 

Proof                        

Under the model-based approach the bias of an estimator is given as,  

Bias(𝑇̂𝑅𝑇) = 𝐸(𝑇̂ − 𝑇) 

                  = 𝐸([∑ 𝑦𝑖 + ∑ 𝑚̂𝑅𝑇(𝑥𝑖)
𝑁
𝑖=𝑛+1

𝑛
𝑖=1 ] − [∑ 𝑦𝑖 + ∑ 𝑦𝑖

𝑁
𝑖=𝑛+1

𝑛
𝑖=1 ])      

                  = 𝐸(∑ 𝑚̂𝑅𝑇(𝑥𝑖) − ∑ 𝑦𝑖
𝑁
𝑖=𝑛+1

𝑁
𝑖=𝑛+1 ) 

Bias(𝑇̂𝑅𝑇) = 𝐸(∑ 𝑚̂𝑅𝑇(𝑥𝑖) − ∑ 𝑚(𝑥)𝑁
𝑖=𝑛+1

𝑁
𝑖=𝑛+1 )                                                    (3.17) 
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The proposed estimator is given as, 

       𝑚̂𝑅𝑇(𝑥) =
1

𝑛ℎ
∑ {𝐾 (

𝑥−𝑔1(𝑋𝑖)

ℎ
) + 𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)}𝑛

𝑖=1   

E(𝑚̂𝑅𝑇(𝑥𝑖)) =
1

𝑛ℎ
𝐸 {∑ 𝐾 (

𝑥−𝑔1(𝑋𝑖)

ℎ
) + (

𝑥+𝑔2(𝑋𝑖)

ℎ
)𝑛

𝑖=1 } 

∑ [(𝑚̂𝑅𝑇(𝑥𝑖))] =
1

𝑛ℎ
∑ {𝐸 ∑ [𝐾 (

𝑥−𝑔1(𝑋𝑖)

ℎ
) + 𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)]𝑛

𝑖=1 }𝑁
𝑖=𝑛+1

𝑁
𝑖=𝑛+1               (3.18) 

Analyzing the first part of the equation 3.18 

                   =
1

𝑛ℎ
∑ {∑ 𝐸 [𝐾 (

𝑥−𝑔1(𝑋𝑖)

ℎ
)]𝑛

𝑖=1 }𝑁
𝑖=𝑛+1   

                   =
𝑁−𝑛

𝑛ℎ
∫ 𝐾 (

𝑥−𝑔1(𝑋𝑖)

ℎ
) 𝑚(𝑋𝑖)𝑑𝑋

∞

0
 

Using change of variable technique, we have, 

Let 𝑡 = (
𝑥−𝑔1(𝑋𝑖

ℎ
) and given that x=ch 

𝑔1(𝑋𝑖) = 𝑐ℎ − 𝑡ℎ  

        𝑋𝑖 = 𝑔1
−1(𝑐 − 𝑡)ℎ  

Thus, the equation becomes, 

∑ [𝑚̂𝑅𝑇(𝑥𝑖)]𝑁
𝑛+1 =

𝑁−𝑛

𝑛
∫ 𝐾(𝑡)

𝑚(𝑔1
−1(𝑐−𝑡)ℎ)

𝑔1
′ (𝑔1

−1(𝑐−𝑡)ℎ)

𝑐

−1
dt                                    (3.19) 

Using Taylor series expansion of order 2 at t=c 
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=
𝑁 − 𝑛

𝑛
∫ {

𝑚(𝑔1
−1(0))

𝑔1
′ (𝑔1

−1(0))

𝑐

−1

− (𝑡 − 𝑐)ℎ
𝑔1

′ (𝑔1
−1(0))𝑚′(𝑔1

−1(0)) − 𝑔1
′′(𝑔1

−1(0))𝑚(𝑔1
−1(0))

[𝑔1
′ (𝑔1

−1(0))]
3

+
ℎ2

2
(𝑡 − 𝑐)2 [

𝑔1
′ (𝑔1

−1(0))𝑚′′(𝑔1
−1(0)) − 𝑔1

′′′(𝑔1
−1(0))𝑚(𝑔1

−1(0))

[𝑔1
′ (𝑔1

−1(0))]4

−
3𝑔1

′′(𝑔1
−1(0)){𝑔1

′ (𝑔1
−1(0))𝑚′(𝑔1

−1(0)) − 𝑔1
′′(𝑔1

−1(0))𝑚(𝑔1
−1(0))}

[𝑔1
′ (𝑔1

−1(0))]5
]} 𝑑𝑡 + 𝑜(ℎ2) 

                                                                                                                                           (3.20) 

Using the assumptions 𝑔−1(0) = 0 𝑎𝑛𝑑 𝑔′(0) = 2 the equation reduces to 

=
𝑁−𝑛

𝑛
{𝑚(0) ∫ 𝐾(𝑡)𝑑𝑡 − 2ℎ ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡[𝑚′(0) − 𝑔1

′′(0)𝑚(0)] +
2ℎ2

2
∫ (𝑡 −

𝑐

−1

𝑐

−1

𝑐

−1

𝑐)2𝐾(𝑡)𝑑𝑡{𝑚′′(0) − 𝑔1
′′′(0)𝑚(0) − 3𝑔1

′′(0)[2𝑚′(0) − 𝑔1
′′(0)𝑚(0)]}} + 𝑜(ℎ2)                                                                                        

(3.21) 

For the second part of the equation we have, 

=
1

𝑛ℎ
∑ {∑ 𝐸 [𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)]𝑛

𝑖=1 }𝑁
𝑖=𝑛+1   

=
𝑁−𝑛

𝑛ℎ
∫ 𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
) 𝑚(𝑋𝑖)𝑑𝑋

∞

0
                                                                               (3.22) 

Using change of variables technique, we have, 

=
𝑁−𝑛

𝑛
∫ 𝐾(𝑡)

𝑚(𝑔2
−1(𝑡−𝑐)ℎ)

𝑔2
′ (𝑔2

−1(𝑡−𝑐)ℎ)

1

𝑐
dt                                                                  (3.23) 

Under Taylor series expansion of order 2 at t=c the equation becomes, 



23 
 

=
𝑁−𝑛

𝑛
∫ {

𝑚(𝑔2
−1(0))

𝑔2
′ (𝑔2

−1(0))
+ (𝑡 − 𝑐)ℎ

𝑔2
′ (𝑔2

−1(0))𝑚′(𝑔2
−1(0))−𝑔2

′′(𝑔2
−1(0))𝑚(𝑔2

−1(0))

[𝑔2
′ (𝑔2

−1(0))]
3 +

ℎ2

2
(𝑡 −

1

𝑐

𝑐)2 [
𝑔2

′ (𝑔2
−1(0))𝑚′′(𝑔2

−1(0))−𝑔2
′′(𝑔2

−1(0))𝑚(𝑔2
−1(0))

[𝑔2
′ (𝑔2

−1(0))]
4 −

3𝑔2
′′(𝑔2

−1(0)){𝑔2
′ (𝑔2

−1(0))𝑚′(𝑔2
−1(0))−𝑔2

′′(𝑔2
−1(0))𝑚(𝑔2

−1(0))}

[𝑔2
′ (𝑔2

−1(0))]
5 ]} 𝑑𝑡 + 𝑜(ℎ2)                 (3.24)                                                                                                            

Since 𝑚′′(0) exists and is continuous near 0, for 𝑥 = 𝑐ℎ we have, 

𝑚(0) = 𝑚(𝑥𝑖) − 𝑐ℎ𝑚′(𝑥𝑖) +
(𝑐ℎ)2

2
𝑚′′(𝑥𝑖) + 𝑜(ℎ2)  

𝑚′(𝑥) = 𝑚′(0) + 𝑐ℎ𝑚′′(0) + 𝑜(ℎ)  

𝑚′′(𝑥) = 𝑚′′(0) + 𝑜(1)    

𝐸(𝑚̂𝑅𝑇(𝑥𝑖)) =
𝑁−𝑛

𝑛
{𝑚(0) + 2ℎ [∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡{𝑚′(0) − 𝑔1

′′(0)𝑚(0)}
1

𝑐
] −

2ℎ[∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡{𝑚′(0) − 𝑔2
′′(0)𝑚(0)}

𝑐

−1
] +

2ℎ2

2
{∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡[𝑚′′(0) −

1

𝑐

𝑔1
′′′(0)𝑚(0) − 3𝑔1

′′(0){2𝑚′(0) − 𝑔1
′′(0)𝑚(0)}]} +

2ℎ2

2
{∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡[𝑚′′(0) −

𝑐

−1

𝑔2
′′′(0)𝑚(0) − 3𝑔2

′′(0){2𝑚′(0) − 𝑔2
′′(0)𝑚(0)}]}} + 𝑜(ℎ2)  

 = 𝑚(𝑥) + 2ℎ {2𝑚′(0) ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡 − 𝑔1
′′(0)𝑚(0) ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡 −

1

𝑐

1

𝑐

𝑔2
′′(0)𝑚(0) (𝑐 + ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡

1

𝑐
)} +

2ℎ2

2
{−𝑐2𝑚′′(0) + 𝑚′′(0) ∫ (𝑡 −

1

−1

𝑐)2𝐾(𝑡)𝑑𝑡 − [𝑔1
′′′(0)𝑚(0) + 3𝑔1

′′(0){2𝑚′(0) − 𝑔1
′′(0)𝑚(0)}] ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡 −

1

𝑐

[𝑔2
′′′(0)𝑚(0) + 3𝑔2

′′(0){2𝑚′(0) − 𝑔2
′′(0)𝑚(0)}] ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡

𝑐

−1
} + 𝑜(ℎ2)       

                                                                                                                            (3.25)                                                                                                                                                                                                   

Thus, the bias is given as, 
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𝐸[𝑚̂𝑅𝑇(𝑥𝑖)] − 𝑚(𝑥)  

=
𝑁−𝑛

𝑛
{2ℎ [2𝑚′(0) ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡 −

1

𝑐
𝑔1

′′(0)𝑚(0) ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡  −
1

𝑐

𝑔2
′′(0)𝑚(0) (𝑐 + ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡

1

𝑐
)] +

2ℎ2

2
[−𝑐2𝑚′′(0) + 𝑚′′(0) ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡 −

1

−1

[𝑔1
′′′(0)𝑚(0) + 3𝑔1

′′(0){2𝑚′(0) − 𝑔1
′′(0)𝑚(0)}] ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡 − [𝑔2

′′′(0)𝑚(0) +
1

𝑐

3𝑔2
′′(0){2𝑚′(0) − 𝑔2

′′(0)𝑚(0)}] ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡
𝑐

−1
]} + 𝑜(ℎ2)  

                                                                                                                                               (3.26)                        

As 𝑛 → ∞ 𝑎𝑛𝑑 ℎ → 0 the bias of the estimator tends to zero. 

3.9.Variance of the Proposed Estimator.  

The variance of the proposed estimator is given by proposition 3.9 

Proposition 3.2 

𝑉𝑎𝑟(𝑚̂𝑅𝑇(𝑥)) =
(𝑁−𝑛)2

𝑛ℎ
{∫ 𝐾(𝑡)2𝑑𝑡 +

1

−1
2 ∫ 𝐾(𝑡)𝐾(−2 + (3𝑐 − 2𝑡))𝑑𝑡

𝑐

−1
} + 𝑜 (

1

𝑛ℎ
)  

                                                                                                                                                          (3.27) 

Proof 

𝑣𝑎𝑟(𝑇) = 𝐸[𝑇]2 − [𝐸(𝑇)]2  

𝑣𝑎𝑟[∑ (𝑚̂𝑅𝑇)𝑁
𝑖=𝑛+1 ] =

(𝑁−𝑛)2

𝑛ℎ2
{𝑣𝑎𝑟 [𝐾 (

𝑥−𝑔1(𝑋𝑖)

ℎ
) + 𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)]}  

                                 =
(𝑁−𝑛)2

𝑛ℎ2 {𝐸 [𝐾 (
𝑥−𝑔1(𝑋𝑖)

ℎ
) + 𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)]

2

− [𝐸 (𝐾 (
𝑥−𝑔1(𝑋𝑖)

ℎ
) +

𝐾 (
𝑥+𝑔2(𝑋𝐼)

ℎ
))]

2

} 

We let, 
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𝐴 =
(𝑁−𝑛)2

𝑛ℎ2
{𝐸 [𝐾 (

𝑥−𝑔1(𝑋𝑖)

ℎ
) + 𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)]

2

}  

   =
(𝑁−𝑛)2

𝑛ℎ2 {𝐸 [𝐾 (
𝑥−𝑔1(𝑋𝑖)

ℎ
)]

2

+ 𝐸 [𝐾 (
𝑥+𝑔2(𝑋𝑖)

ℎ
)]

2

+ 2𝐸 [𝐾 (
𝑥−𝑔1(𝑋𝑖)

ℎ
) 𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)]}  

   =
(𝑁−𝑛)2

𝑛ℎ2 {∫ 𝐾 (
𝑥−𝑔1(𝑋𝑖)

ℎ
)

2

𝑚(𝑋)𝑑𝑋 + ∫ 𝐾 (
𝑥+𝑔2(𝑋𝑖)

ℎ
)

2

𝑚(𝑋)𝑑𝑋 +
∞

0

∞

0

       2 ∫ 𝐾 (
𝑥−𝑔1(𝑋𝑖)

ℎ
) 𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
) 𝑚(𝑋)𝑑𝑋

∞

0
}                                                             (3.28) 

Using the change of variable technique, by letting 𝑋𝑖 = 𝑢, we have, 

 =
(𝑁−𝑛)2

𝑛ℎ2
{∫ 𝐾 (

𝑥−𝑔1(𝑢)

ℎ
)

2

𝑚(𝑢)𝑑𝑢 + ∫ 𝐾 (
𝑥+𝑔2(𝑢)

ℎ
)

2

𝑚(𝑢)𝑑𝑢 +
∞

0

∞

0

       2 ∫ 𝐾 (
𝑥−𝑔1(𝑢)

ℎ
) 𝐾 (

𝑥+𝑔2(𝑢)

ℎ
) 𝑚(𝑢)𝑑𝑢

∞

0
}                                                                 (3.29) 

  = 𝐴1 + 𝐴2  

Computing 𝐴1 ,  

Let 𝑡 =
𝑥−𝑔1(𝑢)

ℎ
 and given 𝑥 = 𝑐ℎ, we have 

ℎ𝑡 = 𝑐ℎ − 𝑔1(𝑢)  

𝑢 = 𝑔1
−1(𝑐 − 𝑡)ℎ  

We have, 

=
(𝑁−𝑛)2

𝑛ℎ2 [ℎ ∫ 𝐾2(𝑡)
𝑚(𝑔1

−1((𝑐−𝑡)ℎ)

𝑔1
′ (𝑔1

−1((𝑐−𝑡)ℎ))
𝑑𝑡 + ℎ ∫ 𝐾2(𝑡)

𝑚(𝑔2
−1((𝑡−𝑐)ℎ)

𝑔2
′ (𝑔2

−1((𝑡−𝑐)ℎ))

1

𝑐

𝑐

−1
𝑑𝑡]                (3.30) 

             =
(𝑁−𝑛)2𝑚(0)

𝑛ℎ
∫ 𝐾(𝑡)2𝑑𝑡 + 𝑜 (

1

𝑛ℎ
)

1

−1
                                                                            (3.31) 

By the continuity property of 𝑔1
′′ 𝑎𝑛𝑑 𝑔2

′′ and by Taylor expansion of order two on 𝑔1 and 𝑔2, 

we have, 
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𝑔1((𝑐 − 𝑡)ℎ) = 𝑔1(0) + (𝑡 − 𝑐)(−ℎ)𝑔1
′ (0) + 𝑂(ℎ2)  

                       = 2 + 2(𝑐 − 𝑡)ℎ + 𝑂(ℎ2)                                                                     (3.32) 

And, 

𝑔2((𝑐 − 𝑡)ℎ) = 𝑔2(0) + (𝑡 − 𝑐)(−ℎ)𝑔2
′ (0) + 𝑂(ℎ2)  

                       = 2 + 2(𝑐 − 𝑡)ℎ + 𝑂(ℎ2)                                                                    (3.33) 

Since 𝑔𝑖(0) = 2 and 𝑔𝑖
′(0) = 2, i=1,2 using the two equations above and by the change of 

variables  

𝑡 =
𝑥−𝑔1(𝑋𝑖)

ℎ
  

𝑋𝑖 = 𝑔1
−1(𝑥 − ℎ𝑡)  

𝐴2 =
2(𝑁−𝑛)2

𝑛ℎ2
{∫ 𝐾 (

𝑥+𝑔1(𝑋𝑖)

ℎ
) 𝐾 (

𝑥−𝑔2(𝑋𝑖)

ℎ
) 𝑚(𝑋𝑖)𝑑𝑋}  

      =
2(𝑁−𝑛)2

𝑛ℎ
{∫ 𝐾(𝑡)𝐾 (

𝑥−𝑔2(𝑔1
−1(ℎ𝑡−𝑥))

ℎ
) 𝑚(𝑔1

−1(ℎ𝑡 − 𝑥))𝑑𝑡
𝑐

−1
} 

    =
2(𝑁−𝑛)2

𝑛ℎ
{∫ 𝐾(𝑡)𝐾 (

𝑥−(2+2(𝑡−𝑐)ℎ+𝑂(ℎ2))

ℎ
) 𝑚(𝑔1

−1(ℎ𝑡 − 𝑥))𝑑𝑡
𝑐

−1
} 

    =
2(𝑁−𝑛)2

𝑛ℎ
∫ 𝐾(𝑡)𝐾(−2 + (3𝑐 − 2𝑡 + 𝑂(ℎ)))(𝑚(0) + 𝑂(ℎ))𝑑𝑡

𝑐

−1
 

    =
2(𝑁−𝑛)2

𝑛ℎ
∫ 𝐾(𝑡)𝐾(−2 + (3𝑐 − 2𝑡))𝑑𝑡 + 𝑜 (

1

𝑛ℎ
)

𝑐

−1
                                                (3.34) 

𝐵 =
1

𝑛ℎ2
{𝐸 [𝐾 (

𝑥+𝑔1(𝑥𝑖)

ℎ
) + 𝐾 (

𝑥−𝑔2(𝑥𝑖)

ℎ
)]}

2

  

    =𝑜 (
1

𝑛ℎ
)    

This follows from equations 3.16 and 3.19                                                                                                      
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Therefore, by combining the equations above (3.22 to 3.28), we have 

𝑉𝑎𝑟(𝑚̂𝑅𝑇(𝑥)) =
(𝑁−𝑛)2

𝑛ℎ
{∫ 𝐾(𝑡)2𝑑𝑡 +

1

−1
2 ∫ 𝐾(𝑡)𝐾(−2 + (3𝑐 − 2𝑡))𝑑𝑡

𝑐

−1
} + 𝑜 (

1

𝑛ℎ
)       

                                                                                                                             (3.35)                                                   

The variance of 𝑚̂(𝑥) decreases in 𝑛ℎ as 𝑛 → ∞ and the bandwidth h→ 0. Therefore, 

this implies that as variance decreases with an increase in sample size. 

3.10. Mean Squared Error of the Proposed Estimator 

The mean squared error brings together the variance of the estimator and the square of the bias 

term of the estimator 

MSE(𝑇̂) = 𝑉𝑎𝑟(𝑇̂) + (𝐵𝑖𝑎𝑠)2 

=
(𝑁−𝑛)2

𝑛ℎ
{∫ 𝐾(𝑡)2𝑑𝑡 +

1

−1
2 ∫ 𝐾(𝑡)𝐾(−2 + (3𝑐 − 2𝑡))𝑑𝑡

𝑐

−1
} +

[
𝑁−𝑛

𝑛
{2ℎ [2𝑚′(0) ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡 −

1

𝑐
𝑔1

′′(0)𝑚(0) ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡  −
1

𝑐

𝑔2
′′(0)𝑚(0) (𝑐 + ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡

1

𝑐
)] +

2ℎ2

2
[−𝑐2𝑚′′(0) + 𝑚′′(0) ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡 −

1

−1

[𝑔1
′′′(0)𝑚(0) + 3𝑔1

′′(0){2𝑚′(0) − 𝑔1
′′(0)𝑚(0)}] ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡 − [𝑔2

′′′(0)𝑚(0) +
1

𝑐

3𝑔2
′′(0){2𝑚′(0) − 𝑔2

′′(0)𝑚(0)}] ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡
𝑐

−1
]}]

2

+ 𝑜 (
1

𝑛ℎ
)                 

                                                                                                                             (3.36)                                                                               

 The mean squared error decreases in 𝑛ℎ as n→ ∞  and ℎ → 0 which implies that the mean 

squared error decreases with an increase in sample size.           
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CHAPTER FOUR 

RESEARCH RESULTS 

4.1   Introduction 

In this chapter, simulated data is used to test the developed theory in chapter three. The 

simulation of data was carried out using the R statistical package. The conditional and 

unconditional properties of the simulation variables are reviewed. Three mean functions are used 

in generating data sets that was used to carry out the estimation of the population total and the 

corresponding mean squared error. In the study, we used the mean functions for totals employed 

by (Breidt and Opsomer, 2000). They include linear, quadratic and exponential theoretical 

models. Afterwards, the analysis and comparison of the performance of the proposed estimator 

was done against the estimator proposed by (Dorfman, 1992), the ratio estimator and the Horvitz-

Thompson estimator. 

4.2   Properties of the Data Variables for Simulation 

The auxiliary variables were generated as independent and identically distributed random 

variables on U(0,1). For the improvement on the precision of estimation, the auxiliary variables 

for each data set are collected and included in the estimators. This is due to the importance of 

the information contained in the auxiliary variable necessary for the estimation of population 

total. The data sets are artificial data obtained by simulating three theoretical models in R 

statistical package. The three theoretical data variables were adopted from (Breidt and Opsomer, 

2000). The mean functions for getting the data sets are described below 

The linear model was used to simulate the first data set. The model is given as 

𝑌𝑖 = 1 + 2(𝑥𝑖 − 0.5) + 𝑒𝑖                                                                                             (4.1) 

A uniform distribution is used to simulate the random variable X and takes the values that are 

equally likely to occur including the extremes from 0 to 1. (𝑥𝑖 , 𝑦𝑖) i= 1, 2, …., N are assumed to 
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be independent and identically distributed random variables with the error component being 

standard normal variable. 

The second data set was obtained through simulation by the use of a quadratic model given as  

𝑌𝑖 = 1 + 2(𝑥𝑖 − 0.5)2 + 𝑒𝑖                                                                                           (4.2) 

The random variable X here is also simulated by the use of a uniform distribution and takes the 

values that equally likely to occur including the extremes. (𝑥𝑖 , 𝑦𝑖) are assumed to be iid random 

variables and 𝑒𝑖~𝑁(0,1). 

The third data set was simulated by the use of an exponential model given as 

𝑌𝑖 = exp(−8𝑥𝑖) + 𝑒𝑖                                                                                                      (4.3) 

The random variable X is generated as independent and identically distributed U(0,1). 

In all the three data variables, a population of size 1000 was simulated and samples of size 300 

are selected from each population and the estimates of the population total and the mean squared 

error computed. 
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Figure 4.1a, 4.1b and 4.1c: Graphs showing the three data variable functions that is the 

linear model, the quadratic model and the exponential model respectively.  

 

The figure 4.1a, 4.1b and 4.1c shows the properties of the three theoretical data variables used 

in data simulation. Figure 4.1a shows the linear property of the linear model, figure 4.1b 

represents the quadratic property of the equation and figure 4.1c shows the properties of the 

exponential function.  

We chose to apply the three theoretical data variables in simulation due to their varied 

applications in real life. Linear functions are used in determining the relationship between the 

dependent and independent variables. For example, in economics linear functions are used to 



31 
 

analyze the relationship between the price, supply and demand of various commodities. 

Quadratic functions are used to develop profit and loss functions in economics. They are also 

used in physics to describe the trajectory followed by objects thrown at an angle. Exponential 

functions are used in modelling growth or decay. For example, it can be used to determine the 

population growth.  

4.3   Unconditional Properties of the Estimator 

In this section, the estimates of the bias and the mean squared error of the finite population total 

for the proposed estimator, the Dorfman estimator, the Horvitz-Thompson estimator and the 

Ratio estimator are recorded, analyzed and conclusions made. In the study, a population of size 

1000 was simulated using statistical R i386 4.0.3 package and samples of size 300 generated 

using stratified random sampling. A comparison between the proposed estimator, the Dorfman 

estimator, the Horvitz-Thompson estimator and the ratio estimator was done. The biases of our 

estimator, the estimator proposed by Dorfman (1992), the Horvitz-Thompson estimator and the 

ratio estimator are computed as (𝑇̂𝑇𝑅 − 𝑌), (𝑇̂𝑁𝑊 − 𝑌), (𝑇̂𝐻𝑇 − 𝑌) 𝑎𝑛𝑑 (𝑇̂𝑅 − 𝑌) respectively. 

Table 4.1: Unconditional Bias of the Estimators 

MODEL 𝑻̂𝑹𝑻 𝑻̂𝑵𝑾 𝑻 ̂𝑯𝑻 𝑻̂𝑹 

Linear 212.1953 935.7327 -16.70931 -16.08618 

Quadratic 12.20103 568.9697 -30.06625 -31.18455 

Exponential -2.273007 -57.98402 -12.75688 -5.988498 

4.4   The Mean Squared Error 

The measures of the mean squared errors were computed for the four data sets and then 

compared.  

𝑀𝑆𝐸 =
∑ (𝑇̂𝑖−𝑇)2300

𝑖=1

300
                                                                                                          (4.4) 
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The results are tabulated in Table 2 below, 

Table 4.2: Mean Squared Error of the Estimators 

MODEL 𝑻𝑹𝑻 𝑻̂𝑵𝑾 𝑻̂𝑯𝑻 𝑻̂𝑹 

Linear 150.0895 2918.652 0.9306704 0.8625511 

Quadratic 0.4962173 1079.088 3.013264 3.241588 

Exponential 0.01722187 11.20716 0.5424597 0.1195404 

 

4.5   Conditional Properties of the Estimator 

Here, the samples selected are grouped into groups of size 20 therefore we have 15 groups. The 

grand mean for each group is computed as  

𝑋̿ =
1

15
∑ 𝑥̅𝑖

20
𝑖=1                                                                                                                 (4.5) 

The mean estimator is also computed as 

𝑇̂̅𝑇𝑅 =
1

15
∑ 𝑇̂𝑇𝑅 𝑖

20
𝑖=1                                                                                                          (4.6) 

The conditional bias for each group was then computed as (𝑇̂̅𝑇𝑅 − 𝑌̅) where 𝑌̅ is the population 

mean for the survey measurement and 𝑥̅𝑖 is the sample mean for the auxiliary variables. The 

behavior of the conditional bias for each estimate is checked against each mean function. 
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Figure 4.2: Conditional Bias for a Linear Function. 

 

Figure 4.3: Conditional Bias for Quadratic Mean Function 
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Figure 4.4: Conditional Bias for an Exponential Mean Function 
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CHAPTER FIVE 

DISCUSSIONS 

5.1   Introduction 

This chapter presents the discussion of the results obtained after data was analyzed. Data was 

simulated and analyzed by R statistical package. The tabulated results and figures presented in 

chapter four are discussed in details. 

5.2   Unconditional Bias  

From Table 4.1, some of the values of the biases are negative and others are positive which 

indicate either underestimation or overestimation. For the linear function, the ratio estimator has 

the lowest bias followed -16.08618, by the Horvitz-Thompson estimator with -16.70931 and the 

proposed estimator is the third with 212.1953. In quadratic model, the proposed estimator 

performs the best with a bias of 12.20103. In exponential model, the proposed estimator has the 

lowest bias of -2.273007 which indicates that it’s the best. 

5.3   Unconditional MSE 

From Table 4.2, the ratio estimator has the least MSE of 0.8625511 followed by the Horvitz-

Thompson estimator with 0.9306704 under the linear function. For the quadratic function, the 

proposed estimator performed the best with a MSE of 0.4962173 followed by the Horvitz-

Thompson estimator. For the exponential, the proposed estimator outperformed the other three 

models with a MSE of 0.01722187. 
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5.4   Conditional Properties 

The figures 4.2, 4.3 and 4.4 in chapter four shows the trend of the conditional bias for each 

estimator under the three mean functions.  

Figure 4.2 shows the conditional bias under the linear mean function. Figure 4.3 shows the 

conditional bias of the estimators under the quadratic mean function and figure 4.4 shows the 

conditional bias under the exponential mean function. 

From figure 4.2, where the linear mean function was applied, the ratio estimator gave the best 

results. This is attributed to the fact that the ratio estimator is the Best Linear Unbiased Estimator 

(BLUE) thus it cannot be outperformed by any other estimator. It can be observed from the graph 

that the biases of the estimators are minimal. 

 Figure 4.3 where a quadratic mean function was applied, the proposed estimator gave the best 

estimates followed by the Horvitz-Thompson estimator, ratio estimator and the Nadaraya-

Watson estimator performed poorly. It can also be observed from the graph that the bias between 

the estimators is large on the left but reduces towards the right as the mean increases. 

From figure 4.4 the exponential mean function was applied, the proposed estimator gave better 

estimates of the population total followed by the Nadaraya-Watson estimator, the Horvitz-

Thompson estimator and the ratio estimator performed poorly. It can be observed from the graph 

that the biases are minimal throughout the graph. 
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CHAPTER SIX 

CONCLUSION, RECOMMENDATIONS AND PUBLICATION 

6.1   Introduction 

In this chapter, the summary of the work is given out in details. Also, the conclusions of the 

work are outlined as per the objectives of the study and the recommendations given. 

6.2   Conclusion 

A nonparametric estimator for a finite population total that addresses the problem of boundary 

bias effectively by the use of a hybrid of data transformation and data reflection techniques was 

proposed. The properties of the estimator were studied and applied on a simulated data. These 

include the unconditional biases and MSE’s and the conditional biases and MSE’s.  

The first objective of the study was to propose a nonparametric estimator of finite population 

total. This study developed an estimator of finite population total based on a hybrid of data 

transformation and data reflection techniques which addressed the problem of boundary bias 

effectively as shown from the biases tabulated in Table 4.1. The proposed estimator was found 

to perform quite well under the quadratic and exponential models where it produced low biases 

as compared to the Ratio estimator, Horvitz-Thompson and the Nadaraya-Watson estimator. 

However, the ratio estimator was the best under linear models since it’s the Best Linear Unbiased 

Estimator (BLUE). Our estimator has the least mean squared error over the two models. The 

conditional biases shown in figures 4.2 – 4.4 shows that the proposed estimator outperformed 

other estimators. 

 For investigation of properties of the proposed estimator to be carried out, simulation of data 

was done using R statistical software under the theoretical models. Table 4.2 shows the mean 

squared errors and the proposed estimator performed the best. It’s therefore evident that the 
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proposed nonparametric estimator worked well in eliminating the boundary bias as compared to 

the Nadaraya-Watson, the Horvitz-Thompson estimators and the ratio estimator. 

6.3   Recommendations 

From this study, the proposed nonparametric estimator for a finite population total was 

developed and it performed better than (Dorfman, 1992) estimator and therefore can be 

recommended for estimation of finite population total and addressing the boundary problem.  

Estimation of the proposed estimator in this study was based on stratified random sampling. 

Estimation using cluster sampling ought to be carried out and the performance compared. The 

estimator was applied to a simulated data from linear, quadratic and exponential models 

therefore, further research should be carried out to improve the estimator in order to work on all 

the theoretical data variables.   

6.4   Publication 

Mugambi N., Odhiambo R. and Okungu J. (2023). Non-parametric estimator for a finite 

population total under stratified sampling incorporating a hybrid of data reflection and data 

transformation techniques. Journal of Mathematical Theory and Modelling ISSN 2224-5804 

(Paper) ISSN 2225-0522 (Online) Volume 13, No.1 (2023) page 39-51. 
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APPENDIX 1: R CODES 

 set.seed(20) 

e<-rnorm(1000,0,1) 

e 

x<-runif(1000,0,1) 

x 

sum(x) 

mx1<-1+2*(x-0.5)  #linear 

mx1 

mx2<-1+2*(x-0.5)^2  #quadratic 

mx2 

mx3<-exp(-8*x)  #exponential 

mx3 

y1<-mx1+e 

y2<-mx2+e 

y3<-mx3+e 

sum(y1) 

sum(y2) 

sum(y3) 

sum(mx1) 

par(mfrow=c(2,2)) 

plot(x,mx1) 

plot(x,mx2) 

plot(x,mx3) 

sindex=sample(1000,300) #selection of the sample 

x.sample=x[sindex] 

x.sample 

xnosample<-setdiff(x,x.sample) 

xnosample 

   # transformation 

g<-x^2+2*x+2 

xnosample^2+2*xnosample+2 

  #reflection 

xnosamplereflect<-(-(xnosample^2+2*xnosample+2)) 

xnosamplereflect 

sum(x) 

sum(x.sample) 

sindex=sample(1000,300) 

mx1.sample=mx1[sindex] 

mx1.sample 

mx1nosample<-setdiff(mx1,mx1.sample) 

mx1nosample 

mx1nosample^2+2*mx1nosample+2 

mx1nosamplereflect<-(-(mx1nosample^2+2*mx1nosample+2)) 

mx1nosamplereflect 

sum(mx1nosamplereflect) 

sum(mx1.sample) 

y1=mx1+e 

y1 

sum(y1) 

y1.sample<-y1[sindex] 

y1.sample 

sum(y1.sample) 

y1nosample<-setdiff(y1,y1.sample) 
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y1nosample 

sum(y1.sample) 

n<-300 

N<-1000 

h<-0.535 #bandwidth 

kx<-3/4*(1-x^2) #epanechnikov 

TNW1<-sum(y1.sample)+sum((3/4*((1-(x.sample-mx1.sample)/h)^2))*y1.sample) 

TNW1 

TR1<-(sum(y1.sample)/sum(mx1.sample))*sum(mx1) 

TR1 

Pi<-n/N 

THT1<-sum(y1.sample/n*N) 

THT1 

Ttr1<-sum(y1.sample)+1/(n*h)*sum((3/4*(1-(xnosample-mx1nosamplereflect)/h)^2)+(3/4*(1-

(xnosample+mx1nosamplereflect)/h)^2)*y1nosample) 

Ttr1 

sindex=sample(1000,300) 

mx2.sample=mx2[sindex] 

mx2.sample 

mx2nosample<-setdiff(mx2,mx2.sample) 

mx2nosample 

mx2nosample^2+2*mx2nosample+2 

mx2nosamplereflect<-(-(mx2nosample^2+2*mx2nosample+2)) 

mx2nosamplereflect 

sum(mx2nosamplereflect) 

y2<-mx2+e 

sum(y2) 

y2.sample<-y2[sindex] 

y2.sample 

y2nosample<-setdiff(y2,y2.sample) 

y2nosample 

sum(y2.sample) 

TNW2<-sum(y2.sample)+sum(3/4*((1-(x.sample-mx2.sample)/h)^2)*y2.sample) 

TNW2 

TR2<-(sum(y2.sample)/sum(mx2.sample))*sum(mx2) 

TR2 

Pi<-n/N 

THT2<-sum(y2.sample/n*N) 

THT2 

Ttr2<-sum(y2.sample)+1/(n*h)*sum((3/4*(1-(xnosample-mx2nosamplereflect)/h)^2)+(3/4*(1-

(xnosample+mx2nosamplereflect)/h)^2)*y2nosample) 

Ttr2 

sindex=sample(1000,300) 

mx3.sample=mx3[sindex] 

mx3.sample 

mx3nosample<-setdiff(mx3,mx3.sample) 

mx3nosample 

mx3nosample^2+2*mx3nosample+2 

mx3nosamplereflect<-(-(mx3nosample^2+2*mx3nosample+2)) 

mx3nosamplereflect 

sum(mx3nosamplereflect) 

y3 

sum(y3) 

y3.sample<-y3[sindex] 

y3.sample 
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y3nosample<-setdiff(y3,y3.sample) 

y3nosample 

sum(y3.sample) 

TNW3<-sum(y3.sample)+sum(3/4*((1-(x.sample-mx3.sample)/h)^2)*y3.sample) 

TNW3 

TR3<-(sum(y3.sample)/sum(mx3.sample))*sum(mx3) 

TR3 

Pi<-n/N 

THT3<-sum(y3.sample/n*N) 

THT3 

Ttr3<-sum(y3.sample)+1/(n*h)*sum((3/4*(1-(xnosample-mx3nosamplereflect)/h)^2)+(3/4*(1-

(xnosample+mx3nosamplereflect)/h)^2)*y3nosample) 

Ttr3 

#bias 

B1<-sum(TNW1-sum(y1)) 

B1 

B1<-sum(TR1-sum(y1)) 

B1 

B1<-sum(THT1-sum(y1)) 

B1 

B1<-sum(Ttr1-sum(y1)) 

B1 

 

B2<-sum(TNW2-sum(y2)) 

B2 

B2<-sum(TR2-sum(y2)) 

B2 

B2<-sum(THT2-sum(y2)) 

B2 

B2<-sum(Ttr2-sum(y2)) 

B2 

 

B3<-sum(TNW3-sum(y3)) 

B3 

B3<-sum(TR3-sum(y3)) 

B3 

B3<-sum(THT3-sum(y3)) 

B3 

B3<-sum(Ttr3-sum(y3)) 

B3 

#mse 

m1<-sum((TNW1-sum(y1))^2)/300 

m1 

m1<-sum((TR1-sum(y1))^2)/300 

m1 

m1<-sum((THT1-sum(y1))^2)/300 

m1 

m1<-sum((Ttr1-sum(y1))^2)/300 

m1 

m2<-sum((TNW2-sum(y2))^2)/300 

m2 

m2<-sum((TR2-sum(y2))^2)/300 

m2 

m2<-sum((THT2-sum(y2))^2)/300 

m2 
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m2<-sum((Ttr2-sum(y2))^2)/300 

m2 

m3<-sum((TNW3-sum(y3))^2)/300 

m3 

m3<-sum((TR3-sum(y3))^2)/300 

m3 

m3<-sum((THT3-sum(y3))^2)/300 

m3 

m3<-sum((Ttr3-sum(y3))^2)/300 

m3                                                          

sindex<-sample(1000,300) 

ep<-e[sindex] 

ep 

M<-x.sample 

M 

m<-length(M) 

m 

sindex<-sample(300,20) 

M.sample<-M[sindex] 

M.sample 

Mnosample<-setdiff(M,M.sample) 

Mnosample 

mM1<-1+2*(M-0.5)  #Linear 

mM1 

sum(mM1) 

l<-length(mM1) 

l 

mM2<-1+2*(M-0.5)^2  #Quadratic 

mM2 

q<-length(mM2) 

q 

mM3<-exp(-8*M) 

mM3 

j<-length(mM3) 

j 

yL<-mM1+ep 

yL 

sum(yL) 

mean(yL) 

yQ<-mM2+ep 

yQ 

sum(yQ) 

mean(yQ) 

yE<-mM3+ep 

yE 

sum(yE) 

mean(yE) 

#Conditional bias for Linear Function 

idx<-sample(rep(1:15,each=ceiling(l/15)),replace=FALSE) 

A1<-mM1[idx==1]  

A1 

sum(A1) 

mean(A1) 

A1nosample<-setdiff(mM1,A1) 

A1nosample 
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A1nosample^2+2*A1nosample+2 

A1nosamplereflect<-(-(A1nosample^2+2*A1nosample+2)) 

A1nosamplereflect 

sum(A1nosamplereflect) 

yL.sample<-yL[idx==1] 

yL.sample 

sum(yL.sample) 

yLnosample<-setdiff(yL,yL.sample) 

yLnosample 

n1<-20 

N1<-300 

h1<-1.35 

TNWL1<-sum(yL.sample)+sum((3/4*((1-(M.sample-A1)/h1)^2))*yL.sample) 

TNWL1 

TRL1<-(sum(yL.sample)/sum(A1))*sum(mM1) 

TRL1 

Pi<-n1/N1 

THTL1<-sum(yL.sample/n1*N1) 

THTL1 

TtrL1<-sum(yL.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-A1nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+A1nosamplereflect)/h1)^2)*yLnosample) 

TtrL1 

A2<-mM1[idx==2] 

A2 

mean(A2) 

A2nosample<-setdiff(mM1,A2) 

A2nosample 

A2nosample^2+2*A2nosample+2 

A2nosamplereflect<-(-(A2nosample^2+2*A2nosample+2)) 

A2nosamplereflect 

yL.sample<-yL[idx==2] 

yL.sample 

yLnosample<-setdiff(yL,yL.sample) 

yLnosample 

TNWL2<-sum(yL.sample)+sum((3/4*((1-(M.sample-A2)/h1)^2))*yL.sample) 

TNWL2 

TRL2<-(sum(yL.sample)/sum(A2))*sum(mM1) 

TRL2 

Pi<-n1/N1 

THTL2<-sum(yL.sample/n1*N1) 

THTL2 

TtrL2<-sum(yL.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-A2nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+A2nosamplereflect)/h1)^2)*yLnosample) 

TtrL2 

A3<-mM1[idx==3] 

A3 

mean(A3) 

A3nosample<-setdiff(mM1,A3) 

A3nosample 

A3nosample^2+2*A3nosample+2 

A3nosamplereflect<-(-(A3nosample^2+2*A3nosample+2)) 

A3nosamplereflect 

yL.sample<-yL[idx==3] 

yL.sample 

yLnosample<-setdiff(yL,yL.sample) 
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yLnosample 

TNWL3<-sum(yL.sample)+sum((3/4*((1-(M.sample-A3)/h1)^2))*yL.sample) 

TNWL3 

TRL3<-(sum(yL.sample)/sum(A3))*sum(mM1) 

TRL3 

Pi<-n1/N1 

THTL3<-sum(yL.sample/n1*N1) 

THTL3 

TtrL3<-sum(yL.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-A3nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+A3nosamplereflect)/h1)^2)*yLnosample) 

TtrL3 

A4<-mM1[idx==4] 

A4 

mean(A4) 

A4nosample<-setdiff(mM1,A4) 

A4nosample 

A4nosample^2+2*A4nosample+2 

A4nosamplereflect<-(-(A4nosample^2+2*A4nosample+2)) 

A4nosamplereflect 

yL.sample<-yL[idx==4] 

yL.sample 

yLnosample<-setdiff(yL,yL.sample) 

yLnosample 

TNWL4<-sum(yL.sample)+sum((3/4*((1-(M.sample-A4)/h1)^2))*yL.sample) 

TNWL4 

TRL4<-(sum(yL.sample)/sum(A4))*sum(mM1) 

TRL4 

Pi<-n1/N1 

THTL4<-sum(yL.sample/n1*N1) 

THTL4 

TtrL4<-sum(yL.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-A4nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+A4nosamplereflect)/h1)^2)*yLnosample) 

TtrL4 

A5<-mM1[idx==5] 

A5 

mean(A5) 

A5nosample<-setdiff(mM1,A5) 

A5nosample 

A5nosample^2+2*A5nosample+2 

A5nosamplereflect<-(-(A5nosample^2+2*A5nosample+2)) 

A5nosamplereflect 

yL.sample<-yL[idx==5] 

yL.sample 

yLnosample<-setdiff(yL,yL.sample) 

yLnosample 

TNWL5<-sum(yL.sample)+sum((3/4*((1-(M.sample-A5)/h1)^2))*yL.sample) 

TNWL5 

TRL5<-(sum(yL.sample)/sum(A5))*sum(mM1) 

TRL5 

Pi<-n1/N1 

THTL5<-sum(yL.sample/n1*N1) 

THTL5 

TtrL5<-sum(yL.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-A5nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+A5nosamplereflect)/h1)^2)*yLnosample) 

TtrL5 
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A6<-mM1[idx==6] 

A6 

mean(A6) 

A6nosample<-setdiff(mM1,A6) 

A6nosample 

A6nosample^2+2*A6nosample+2 

A6nosamplereflect<-(-(A6nosample^2+2*A6nosample+2)) 

A6nosamplereflect 

yL.sample<-yL[idx==6] 

yL.sample 

yLnosample<-setdiff(yL,yL.sample) 

yLnosample 

TNWL6<-sum(yL.sample)+sum((3/4*((1-(M.sample-A6)/h1)^2))*yL.sample) 

TNWL6 

TRL6<-(sum(yL.sample)/sum(A6))*sum(mM1) 

TRL6 

Pi<-n1/N1 

THTL6<-sum(yL.sample/n1*N1) 

THTL6 

TtrL6<-sum(yL.sample)+1/(n1*h)*sum((3/4*(1-(Mnosample-A6nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+A6nosamplereflect)/h1)^2)*yLnosample) 

TtrL6 

A7<-mM1[idx==7] 

A7 

mean(A7) 

A7nosample<-setdiff(mM1,A7) 

A7nosample 

A7nosample^2+2*A7nosample+2 

A7nosamplereflect<-(-(A7nosample^2+2*A7nosample+2)) 

A7nosamplereflect 

yL.sample<-yL[idx==7] 

yL.sample 

yLnosample<-setdiff(yL,yL.sample) 

yLnosample 

TNWL7<-sum(yL.sample)+sum((3/4*((1-(M.sample-A7)/h1)^2))*yL.sample) 

TNWL7 

TRL7<-(sum(yL.sample)/sum(A7))*sum(mM1) 

TRL7 

Pi<-n1/N1 

THTL7<-sum(yL.sample/n1*N1) 

THTL7 

TtrL7<-sum(yL.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-A7nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+A7nosamplereflect)/h1)^2)*yLnosample) 

TtrL7 

A8<-mM1[idx==8] 

A8 

mean(A8) 

A8nosample<-setdiff(mM1,A8) 

A8nosample 

A8nosample^2+2*A1nosample+2 

A8nosamplereflect<-(-(A8nosample^2+2*A8nosample+2)) 

A8nosamplereflect 

yL.sample<-yL[idx==8] 

yL.sample 

yLnosample<-setdiff(yL,yL.sample) 
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yLnosample 

TNWL8<-sum(yL.sample)+sum((3/4*((1-(M.sample-A8)/h1)^2))*yL.sample) 

TNWL8 

TRL8<-(sum(yL.sample)/sum(A8))*sum(mM1) 

TRL8 

Pi<-n1/N1 

THTL8<-sum(yL.sample/n1*N1) 

THTL8 

TtrL8<-sum(yL.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-A8nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+A8nosamplereflect)/h1)^2)*yLnosample) 

TtrL8 

A9<-mM1[idx==9] 

A9 

mean(A9) 

A9nosample<-setdiff(mM1,A9) 

A9nosample 

A9nosample^2+2*A9nosample+2 

A9nosamplereflect<-(-(A9nosample^2+2*A9nosample+2)) 

A9nosamplereflect 

yL.sample<-yL[idx==9] 

yL.sample 

yLnosample<-setdiff(yL,yL.sample) 

yLnosample 

TNWL9<-sum(yL.sample)+sum((3/4*((1-(M.sample-A9)/h1)^2))*yL.sample) 

TNWL9 

TRL9<-(sum(yL.sample)/sum(A9))*sum(mM1) 

TRL9 

Pi<-n1/N1 

THTL9<-sum(yL.sample/n1*N1) 

THTL9 

TtrL9<-sum(yL.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-A9nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+A9nosamplereflect)/h1)^2)*yLnosample) 

TtrL9 

 

A10<-mM1[idx==10] 

A10 

mean(A10) 

A10nosample<-setdiff(mM1,A10) 

A10nosample 

A10nosample^2+2*A10nosample+2 

A10nosamplereflect<-(-(A10nosample^2+2*A10nosample+2)) 

A10nosamplereflect 

yL.sample<-yL[idx==10] 

yL.sample 

yLnosample<-setdiff(yL,yL.sample) 

yLnosample 

TNWL10<-sum(yL.sample)+sum((3/4*((1-(M.sample-A10)/h1)^2))*yL.sample) 

TNWL10 

TRL10<-(sum(yL.sample)/sum(A10))*sum(mM1) 

TRL10 

Pi<-n1/N1 

THTL10<-sum(yL.sample/n1*N1) 

THTL10 

TtrL10<-sum(yL.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-A10nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+A10nosamplereflect)/h1)^2)*yLnosample) 
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TtrL10 

A11<-mM1[idx==11] 

A11 

mean(A11) 

A11nosample<-setdiff(mM1,A11) 

A11nosample 

A11nosample^2+2*A11nosample+2 

A11nosamplereflect<-(-(A11nosample^2+2*A11nosample+2)) 

A11nosamplereflect 

yL.sample<-yL[idx==11] 

yL.sample 

yLnosample<-setdiff(yL,yL.sample) 

yLnosample 

TNWL11<-sum(yL.sample)+sum((3/4*((1-(M.sample-A11)/h1)^2))*yL.sample) 

TNWL11 

TRL11<-(sum(yL.sample)/sum(A11))*sum(mM1) 

TRL11 

Pi<-n1/N1 

THTL11<-sum(yL.sample/n1*N1) 

THTL11 

TtrL11<-sum(yL.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-A11nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+A11nosamplereflect)/h1)^2)*yLnosample) 

TtrL11 

A12<-mM1[idx==12] 

A12 

mean(A12) 

A12nosample<-setdiff(mM1,A12) 

A12nosample 

A12nosample^2+2*A12nosample+2 

A12nosamplereflect<-(-(A12nosample^2+2*A12nosample+2)) 

A12nosamplereflect 

yL.sample<-yL[idx==12] 

yL.sample 

yLnosample<-setdiff(yL,yL.sample) 

yLnosample 

TNWL12<-sum(yL.sample)+sum((3/4*((1-(M.sample-A12)/h1)^2))*yL.sample) 

TNWL12 

TRL12<-(sum(yL.sample)/sum(A12))*sum(mM1) 

TRL12 

Pi<-n1/N1 

THTL12<-sum(yL.sample/n1*N1) 

THTL12 

TtrL12<-sum(yL.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-A12nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+A12nosamplereflect)/h1)^2)*yLnosample) 

TtrL12 

A13<-mM1[idx==13] 

A13 

mean(A13) 

A13nosample<-setdiff(mM1,A13) 

A13nosample 

A13nosample^2+2*A13nosample+2 

A13nosamplereflect<-(-(A13nosample^2+2*A13nosample+2)) 

A13nosamplereflect 

yL.sample<-yL[idx==13] 

yL.sample 
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yLnosample<-setdiff(yL,yL.sample) 

yLnosample 

TNWL13<-sum(yL.sample)+sum((3/4*((1-(M.sample-A13)/h1)^2))*yL.sample) 

TNWL13 

TRL13<-(sum(yL.sample)/sum(A13))*sum(mM1) 

TRL13 

Pi<-n1/N1 

THTL13<-sum(yL.sample/n1*N1) 

THTL13 

TtrL13<-sum(yL.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-A13nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+A13nosamplereflect)/h1)^2)*yLnosample) 

TtrL13 

A14<-mM1[idx==14] 

A14 

mean(A14) 

A14nosample<-setdiff(mM1,A14) 

A14nosample 

A14nosample^2+2*A14nosample+2 

A14nosamplereflect<-(-(A14nosample^2+2*A14nosample+2)) 

A14nosamplereflect 

yL.sample<-yL[idx==14] 

yL.sample 

yLnosample<-setdiff(yL,yL.sample) 

yLnosample 

TNWL14<-sum(yL.sample)+sum((3/4*((1-(M.sample-A14)/h1)^2))*yL.sample) 

TNWL14 

TRL1<-(sum(yL.sample)/sum(A14))*sum(mM1) 

TRL1 

Pi<-n1/N1 

THTL14<-sum(yL.sample/n1*N1) 

THTL14 

TtrL14<-sum(yL.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-A14nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+A14nosamplereflect)/h1)^2)*yLnosample) 

TtrL14 

A15<-mM1[idx==15] 

A15 

mean(A15) 

A15nosample<-setdiff(mM1,A15) 

A15nosample 

A15nosample^2+2*A15nosample+2 

A15nosamplereflect<-(-(A15nosample^2+2*A15nosample+2)) 

A15nosamplereflect 

yL.sample<-yL[idx==15] 

yL.sample 

yLnosample<-setdiff(yL,yL.sample) 

yLnosample 

TNWL15<-sum(yL.sample)+sum((3/4*((1-(M.sample-A15)/h1)^2))*yL.sample) 

TNWL15 

TRL15<-(sum(yL.sample)/sum(A15))*sum(mM1) 

TRL15 

Pi<-n1/N1 

THTL15<-sum(yL.sample/n1*N1) 

THTL15 

TtrL15<-sum(yL.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-A15nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+A15nosamplereflect)/h1)^2)*yLnosample) 
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TtrL15 

#conditional bias for quadratic function 

idx<-sample(rep(1:15,each=floor(q/15)),replace=FALSE) 

C1<-mM2[idx==1]  

C1 

mean(C1) 

C1nosample<-setdiff(mM2,C1) 

C1nosample 

C1nosample^2+2*C1nosample+2 

C1nosamplereflect<-(-(C1nosample^2+2*C1nosample+2)) 

C1nosamplereflect 

yQ.sample<-yQ[idx==1] 

yQ.sample 

yQnosample<-setdiff(yQ,yQ.sample) 

yQnosample 

TNWQ1<-sum(yQ.sample)+sum((3/4*((1-(M.sample-C1)/h1)^2))*yQ.sample) 

TNWQ1 

TRQ1<-(sum(yQ.sample)/sum(C1))*sum(mM2) 

TRQ1 

Pi<-n1/N1 

THTQ1<-sum(yQ.sample/n1*N1) 

THTQ1 

TtrQ1<-sum(yQ.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-C1nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+C1nosamplereflect)/h1)^2)*yQnosample) 

TtrQ1 

C2<-mM2[idx==2] 

C2 

mean(C2) 

C2nosample<-setdiff(mM2,C2) 

C2nosample 

C2nosample^2+2*C2nosample+2 

C2nosamplereflect<-(-(C2nosample^2+2*C2nosample+2)) 

C2nosamplereflect 

yQ.sample<-yQ[idx==2] 

yQ.sample 

yQnosample<-setdiff(yQ,yQ.sample) 

yQnosample 

TNWQ2<-sum(yQ.sample)+sum((3/4*((1-(M.sample-C2)/h1)^2))*yQ.sample) 

TNWQ2 

TRQ2<-(sum(yQ.sample)/sum(C2))*sum(mM2) 

TRQ2 

Pi<-n1/N1 

THTQ2<-sum(yL.sample/n1*N1) 

THTQ2 

TtrQ2<-sum(yQ.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-C2nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+C2nosamplereflect)/h1)^2)*yQnosample) 

TtrQ2 

C3<-mM2[idx==3] 

C3 

mean(C3) 

C3nosample<-setdiff(mM2,C3) 

C3nosample 

C3nosample^2+2*C3nosample+2 

C3nosamplereflect<-(-(C3nosample^2+2*C3nosample+2)) 

C3nosamplereflect 
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yQ.sample<-yQ[idx==3] 

yQ.sample 

yQnosample<-setdiff(yQ,yQ.sample) 

yQnosample 

TNWQ3<-sum(yQ.sample)+sum((3/4*((1-(M.sample-C3)/h1)^2))*yQ.sample) 

TNWQ3 

TRQ3<-(sum(yQ.sample)/sum(C3))*sum(mM2) 

TRQ3 

Pi<-n1/N1 

THTQ3<-sum(yQ.sample/n1*N1) 

THTQ3 

TtrQ3<-sum(yQ.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-C3nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+C3nosamplereflect)/h1)^2)*yQnosample) 

TtrQ3 

C4<-mM2[idx==4] 

C4 

mean(C4) 

C4nosample<-setdiff(mM2,C4) 

C4nosample 

C4nosample^2+2*C4nosample+2 

C4nosamplereflect<-(-(C4nosample^2+2*C4nosample+2)) 

C4nosamplereflect 

yQ.sample<-yQ[idx==4] 

yQ.sample 

yQnosample<-setdiff(yQ,yQ.sample) 

yQnosample 

TNWQ4<-sum(yQ.sample)+sum((3/4*((1-(M.sample-C4)/h1)^2))*yQ.sample) 

TNWQ4 

TRQ4<-(sum(yQ.sample)/sum(C4))*sum(mM2) 

TRQ4 

Pi<-n1/N1 

THTQ4<-sum(yQ.sample/n1*N1) 

THTQ4 

TtrQ4<-sum(yQ.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-C4nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+C4nosamplereflect)/h1)^2)*yQnosample) 

TtrQ4 

C5<-mM2[idx==5] 

C5 

mean(C5) 

C5nosample<-setdiff(mM2,C5) 

C5nosample 

C5nosample^2+2*C5nosample+2 

C5nosamplereflect<-(-(C5nosample^2+2*C5nosample+2)) 

C5nosamplereflect 

yQ.sample<-yQ[idx==5] 

yQ.sample 

yQnosample<-setdiff(yQ,yQ.sample) 

yQnosample 

TNWQ5<-sum(yQ.sample)+sum((3/4*((1-(M.sample-C5)/h1)^2))*yQ.sample) 

TNWQ5 

TRQ5<-(sum(yQ.sample)/sum(C5))*sum(mM2) 

TRQ5 

Pi<-n1/N1 

THTQ5<-sum(yQ.sample/n1*N1) 

THTQ5 
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TtrQ5<-sum(yQ.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-C5nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+C5nosamplereflect)/h1)^2)*yQnosample) 

TtrQ5 

C6<-mM2[idx==6] 

C6 

mean(C6) 

C6nosample<-setdiff(mM2,C6) 

C6nosample 

C6nosample^2+2*C6nosample+2 

C6nosamplereflect<-(-(C6nosample^2+2*C6nosample+2)) 

C6nosamplereflect 

yQ.sample<-yQ[idx==6] 

yQ.sample 

yQnosample<-setdiff(yQ,yQ.sample) 

yQnosample 

TNWQ6<-sum(yQ.sample)+sum((3/4*((1-(M.sample-C6)/h1)^2))*yQ.sample) 

TNWQ6 

TRQ6<-(sum(yQ.sample)/sum(C6))*sum(mM2) 

TRQ6 

Pi<-n1/N1 

THTQ6<-sum(yQ.sample/n1*N1) 

THTQ6 

TtrQ6<-sum(yQ.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-C6nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+C6nosamplereflect)/h1)^2)*yQnosample) 

TtrQ6 

C7<-mM2[idx==7] 

C7 

mean(C7) 

C7nosample<-setdiff(mM2,C7) 

C7nosample 

C7nosample^2+2*C7nosample+2 

C7nosamplereflect<-(-(C7nosample^2+2*C7nosample+2)) 

C7nosamplereflect 

yQ.sample<-yQ[idx==7] 

yQ.sample 

yQnosample<-setdiff(yQ,yQ.sample) 

yQnosample 

TNWQ7<-sum(yQ.sample)+sum((3/4*((1-(M.sample-C7)/h1)^2))*yQ.sample) 

TNWQ7 

TRQ7<-(sum(yQ.sample)/sum(C7))*sum(mM2) 

TRQ7 

Pi<-n1/N1 

THTQ7<-sum(yQ.sample/n1*N1) 

THTQ7 

TtrQ7<-sum(yQ.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-C7nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+C7nosamplereflect)/h1)^2)*yQnosample) 

TtrQ7 

C8<-mM2[idx==8] 

C8 

mean(C8) 

C8nosample<-setdiff(mM2,C8) 

C8nosample 

C8nosample^2+2*C8nosample+2 

C8nosamplereflect<-(-(C8nosample^2+2*C8nosample+2)) 

C8nosamplereflect 
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yQ.sample<-yQ[idx==8] 

yQ.sample 

yQnosample<-setdiff(yQ,yQ.sample) 

yQnosample 

TNWQ8<-sum(yQ.sample)+sum((3/4*((1-(M.sample-C8)/h1)^2))*yQ.sample) 

TNWQ8 

TRQ8<-(sum(yQ.sample)/sum(C8))*sum(mM2) 

TRQ8 

Pi<-n1/N1 

THTQ8<-sum(yQ.sample/n1*N1) 

THTQ8 

TtrQ8<-sum(yQ.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-C8nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+C8nosamplereflect)/h1)^2)*yQnosample) 

TtrQ8 

C9<-mM2[idx==9] 

C9 

mean(C9) 

C9nosample<-setdiff(mM2,C9) 

C9nosample 

C9nosample^2+2*C9nosample+2 

C9nosamplereflect<-(-(C9nosample^2+2*C9nosample+2)) 

C9nosamplereflect 

yQ.sample<-yQ[idx==9] 

yQ.sample 

yQnosample<-setdiff(yQ,yQ.sample) 

yQnosample 

TNWQ9<-sum(yQ.sample)+sum((3/4*((1-(M.sample-C9)/h1)^2))*yQ.sample) 

TNWQ9 

TRQ9<-(sum(yQ.sample)/sum(C9))*sum(mM2) 

TRQ9 

Pi<-n1/N1 

THTQ9<-sum(yQ.sample/n1*N1) 

THTQ9 

TtrQ9<-sum(yQ.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-C9nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+C9nosamplereflect)/h1)^2)*yQnosample) 

TtrQ9 

C10<-mM2[idx==10] 

C10 

mean(C10) 

C10nosample<-setdiff(mM2,C10) 

C10nosample 

C10nosample^2+2*C10nosample+2 

C10nosamplereflect<-(-(C10nosample^2+2*C10nosample+2)) 

C10nosamplereflect 

yQ.sample<-yQ[idx==10] 

yQ.sample 

yQnosample<-setdiff(yQ,yQ.sample) 

yQnosample 

TNWQ10<-sum(yQ.sample)+sum((3/4*((1-(M.sample-C10)/h1)^2))*yQ.sample) 

TNWQ10 

TRQ10<-(sum(yQ.sample)/sum(C10))*sum(mM2) 

TRQ10 

Pi<-n1/N1 

THTQ10<-sum(yQ.sample/n1*N1) 

THTQ10 
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TtrQ10<-sum(yQ.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-C10nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+C10nosamplereflect)/h1)^2)*yQnosample) 

TtrQ10 

C11<-mM2[idx==11] 

C11 

mean(C11) 

C11nosample<-setdiff(mM2,C11) 

C11nosample 

C11nosample^2+2*C11nosample+2 

C11nosamplereflect<-(-(C11nosample^2+2*C11nosample+2)) 

C11nosamplereflect 

yQ.sample<-yQ[idx==11] 

yQ.sample 

yQnosample<-setdiff(yQ,yQ.sample) 

yQnosample 

TNWQ11<-sum(yQ.sample)+sum((3/4*((1-(M.sample-C11)/h1)^2))*yQ.sample) 

TNWQ11 

TRQ11<-(sum(yQ.sample)/sum(C11))*sum(mM2) 

TRQ11 

Pi<-n1/N1 

THTQ11<-sum(yQ.sample/n1*N1) 

THTQ11 

TtrQ11<-sum(yQ.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-C11nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+C11nosamplereflect)/h1)^2)*yQnosample) 

TtrQ11 

C12<-mM2[idx==12] 

C12 

mean(C12) 

C12nosample<-setdiff(mM2,C12) 

C12nosample 

C12nosample^2+2*C12nosample+2 

C12nosamplereflect<-(-(C12nosample^2+2*C12nosample+2)) 

C12nosamplereflect 

yQ.sample<-yQ[idx==12] 

yQ.sample 

yQnosample<-setdiff(yQ,yQ.sample) 

yQnosample 

TNWQ12<-sum(yQ.sample)+sum((3/4*((1-(M.sample-C12)/h1)^2))*yQ.sample) 

TNWQ12 

TRQ12<-(sum(yQ.sample)/sum(C12))*sum(mM2) 

TRQ12 

Pi<-n1/N1 

THTQ12<-sum(yQ.sample/n1*N1) 

THTQ12 

TtrQ12<-sum(yQ.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-C12nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+C12nosamplereflect)/h1)^2)*yQnosample) 

TtrQ12 

C13<-mM2[idx==13] 

C13 

mean(C13) 

C13nosample<-setdiff(mM2,C13) 

C13nosample 

C13nosample^2+2*C13nosample+2 

C13nosamplereflect<-(-(C13nosample^2+2*C13nosample+2)) 

C13nosamplereflect 
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yQ.sample<-yQ[idx==13] 

yQ.sample 

yQnosample<-setdiff(yQ,yQ.sample) 

yQnosample 

TNWQ13<-sum(yQ.sample)+sum((3/4*((1-(M.sample-C13)/h1)^2))*yQ.sample) 

TNWQ13 

TRQ13<-(sum(yQ.sample)/sum(C13))*sum(mM2) 

TRQ13 

Pi<-n1/N1 

THTQ13<-sum(yQ.sample/n1*N1) 

THTQ13 

TtrQ13<-sum(yQ.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-C13nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+C13nosamplereflect)/h1)^2)*yQnosample) 

TtrQ13 

C14<-mM2[idx==14] 

C14 

mean(C14) 

C14nosample<-setdiff(mM2,C14) 

C14nosample 

C14nosample^2+2*C14nosample+2 

C14nosamplereflect<-(-(C14nosample^2+2*C14nosample+2)) 

C14nosamplereflect 

yQ.sample<-yQ[idx==14] 

yQ.sample 

yQnosample<-setdiff(yQ,yQ.sample) 

yQnosample 

TNWQ14<-sum(yQ.sample)+sum((3/4*((1-(M.sample-C14)/h1)^2))*yQ.sample) 

TNWQ14 

TRQ14<-(sum(yQ.sample)/sum(C14))*sum(mM2) 

TRQ14 

Pi<-n1/N1 

THTQ14<-sum(yQ.sample/n1*N1) 

THTQ14 

TtrQ14<-sum(yQ.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-C14nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+C14nosamplereflect)/h1)^2)*yQnosample) 

TtrQ14 

C15<-mM2[idx==15] 

C15 

mean(C15) 

C15nosample<-setdiff(mM2,C15) 

C15nosample 

C15nosample^2+2*C15nosample+2 

C15nosamplereflect<-(-(C15nosample^2+2*C15nosample+2)) 

C15nosamplereflect 

yQ.sample<-yQ[idx==15] 

yQ.sample 

yQnosample<-setdiff(yQ,yQ.sample) 

yQnosample 

TNWQ15<-sum(yQ.sample)+sum((3/4*((1-(M.sample-C15)/h1)^2))*yQ.sample) 

TNWQ15 

TRQ15<-(sum(yQ.sample)/sum(C15))*sum(mM2) 

TRQ15 

Pi<-n1/N1 

THTQ15<-sum(yQ.sample/n1*N1) 

THTQ15 
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TtrQ15<-sum(yQ.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-C15nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+C15nosamplereflect)/h1)^2)*yQnosample) 

TtrQ15 

 #Coditional bias for exponential function 

idx<-sample(rep(1:15,each=floor(j/15)),replace=FALSE) 

D1<-mM3[idx==1]  

D1 

mean(D1) 

D1nosample<-setdiff(mM3,D1) 

D1nosample 

D1nosample^2+2*D1nosample+2 

D1nosamplereflect<-(-(D1nosample^2+2*D1nosample+2)) 

D1nosamplereflect 

yE.sample<-yE[idx==1] 

yE.sample 

yEnosample<-setdiff(yE,yE.sample) 

yEnosample 

TNWE1<-sum(yE.sample)+sum((3/4*((1-(M.sample-D1)/h1)^2))*yE.sample) 

TNWE1 

TRE1<-(sum(yE.sample)/sum(D1))*sum(mM3) 

TRE1 

Pi<-n1/N1 

THTE1<-sum(yE.sample/n1*N1) 

THTE1 

TtrE1<-sum(yE.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-D1nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+D1nosamplereflect)/h1)^2)*yEnosample) 

TtrE1 

D2<-mM3[idx==2] 

D2 

mean(D2) 

D2nosample<-setdiff(mM3,D2) 

D2nosample 

D2nosample^2+2*D2nosample+2 

D2nosamplereflect<-(-(D2nosample^2+2*D2nosample+2)) 

D2nosamplereflect 

yE.sample<-yE[idx==2] 

yE.sample 

yEnosample<-setdiff(yE,yE.sample) 

yEnosample 

TNWE2<-sum(yE.sample)+sum((3/4*((1-(M.sample-D2)/h1)^2))*yE.sample) 

TNWE2 

TRE2<-(sum(yE.sample)/sum(D2))*sum(mM3) 

TRE2 

Pi<-n1/N1 

THTE2<-sum(yE.sample/n1*N1) 

THTE2 

TtrE2<-sum(yE.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-D2nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+D2nosamplereflect)/h1)^2)*yEnosample) 

TtrE2 

D3<-mM3[idx==3] 

D3 

mean(D3) 

D3nosample<-setdiff(mM3,D3) 

D3nosample 

D3nosample^2+2*D3nosample+2 
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D3nosamplereflect<-(-(D3nosample^2+2*D3nosample+2)) 

D3nosamplereflect 

yE.sample<-yE[idx==3] 

yE.sample 

yEnosample<-setdiff(yE,yE.sample) 

yEnosample 

TNWE3<-sum(yE.sample)+sum((3/4*((1-(M.sample-D3)/h1)^2))*yE.sample) 

TNWE3 

TRE3<-(sum(yE.sample)/sum(D3))*sum(mM3) 

TRE3 

Pi<-n1/N1 

THTE3<-sum(yE.sample/n1*N1) 

THTE3 

TtrE3<-sum(yE.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-D3nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+D3nosamplereflect)/h1)^2)*yEnosample) 

TtrE3 

 

D4<-mM3[idx==4] 

D4 

mean(D4) 

D4nosample<-setdiff(mM3,D4) 

D4nosample 

D4nosample^2+2*D4nosample+2 

D4nosamplereflect<-(-(D4nosample^2+2*D4nosample+2)) 

D4nosamplereflect 

yE.sample<-yE[idx==4] 

yE.sample 

yEnosample<-setdiff(yE,yE.sample) 

yEnosample 

TNWE4<-sum(yE.sample)+sum((3/4*((1-(M.sample-D4)/h1)^2))*yE.sample) 

TNWE4 

TRE4<-(sum(yE.sample)/sum(D4))*sum(mM3) 

TRE4 

Pi<-n1/N1 

THTE4<-sum(yE.sample/n1*N1) 

THTE4 

TtrE4<-sum(yE.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-D4nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+D4nosamplereflect)/h1)^2)*yEnosample) 

TtrE4 

D5<-mM3[idx==5] 

D5 

mean(D5) 

D5nosample<-setdiff(mM3,D5) 

D5nosample 

D5nosample^2+2*D5nosample+2 

D5nosamplereflect<-(-(D5nosample^2+2*D5nosample+2)) 

D5nosamplereflect 

yE.sample<-yE[idx==5] 

yE.sample 

yEnosample<-setdiff(yE,yE.sample) 

yEnosample 

TNWE5<-sum(yE.sample)+sum((3/4*((1-(M.sample-D5)/h1)^2))*yE.sample) 

TNWE5 

TRE5<-(sum(yE.sample)/sum(D5))*sum(mM3) 

TRE5 
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Pi<-n1/N1 

THTE5<-sum(yE.sample/n1*N1) 

THTE5 

TtrE5<-sum(yE.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-D5nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+D5nosamplereflect)/h1)^2)*yEnosample) 

TtrE5 

D6<-mM3[idx==6] 

D6 

mean(D6) 

D6nosample<-setdiff(mM3,D6) 

D6nosample 

D6nosample^2+2*D6nosample+2 

D6nosamplereflect<-(-(D6nosample^2+2*D6nosample+2)) 

D6nosamplereflect 

yE.sample<-yE[idx==6] 

yE.sample 

yEnosample<-setdiff(yE,yE.sample) 

yEnosample 

TNWE6<-sum(yE.sample)+sum((3/4*((1-(M.sample-D6)/h1)^2))*yE.sample) 

TNWE6 

TRE6<-(sum(yE.sample)/sum(D6))*sum(mM3) 

TRE6 

Pi<-n1/N1 

THTE6<-sum(yE.sample/n1*N1) 

THTE6 

TtrE6<-sum(yE.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-D6nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+D6nosamplereflect)/h1)^2)*yEnosample) 

TtrE6 

 

D7<-mM3[idx==7] 

D7 

mean(D7) 

D7nosample<-setdiff(mM3,D7) 

D7nosample 

D7nosample^2+2*D7nosample+2 

D7nosamplereflect<-(-(D7nosample^2+2*D7nosample+2)) 

D7nosamplereflect 

yE.sample<-yE[idx==7] 

yE.sample 

yEnosample<-setdiff(yE,yE.sample) 

yEnosample 

TNWE7<-sum(yE.sample)+sum((3/4*((1-(M.sample-D7)/h1)^2))*yE.sample) 

TNWE7 

TRE7<-(sum(yE.sample)/sum(D7))*sum(mM3) 

TRE7 

Pi<-n1/N1 

THTE7<-sum(yE.sample/n1*N1) 

THTE7 

TtrE7<-sum(yE.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-D7nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+D7nosamplereflect)/h1)^2)*yEnosample) 

TtrE7 

D8<-mM3[idx==8] 

D8 

mean(D8) 

D8nosample<-setdiff(mM3,D8) 
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D8nosample 

D8nosample^2+2*D8nosample+2 

D8nosamplereflect<-(-(D8nosample^2+2*D8nosample+2)) 

D8nosamplereflect 

yE.sample<-yE[idx==8] 

yE.sample 

yEnosample<-setdiff(yE,yE.sample) 

yEnosample 

TNWE8<-sum(yE.sample)+sum((3/4*((1-(M.sample-D8)/h1)^2))*yE.sample) 

TNWE8 

TRE8<-(sum(yE.sample)/sum(D8))*sum(mM3) 

TRE8 

Pi<-n1/N1 

THTE8<-sum(yE.sample/n1*N1) 

THTE8 

TtrE8<-sum(yE.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-D8nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+D8nosamplereflect)/h1)^2)*yEnosample) 

TtrE8 

D9<-mM3[idx==9] 

D9 

mean(D9) 

D9nosample<-setdiff(mM3,D9) 

D9nosample 

D9nosample^2+2*D9nosample+2 

D9nosamplereflect<-(-(D9nosample^2+2*D9nosample+2)) 

D9nosamplereflect 

yE.sample<-yE[idx==9] 

yE.sample 

yEnosample<-setdiff(yE,yE.sample) 

yEnosample 

TNWE9<-sum(yE.sample)+sum((3/4*((1-(M.sample-D9)/h1)^2))*yE.sample) 

TNWE9 

TRE9<-(sum(yE.sample)/sum(D9))*sum(mM3) 

TRE9 

Pi<-n1/N1 

THTE9<-sum(yE.sample/n1*N1) 

THTE9 

TtrE9<-sum(yE.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-D9nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+D9nosamplereflect)/h1)^2)*yEnosample) 

TtrE9 

D10<-mM3[idx==10] 

D10 

mean(D10) 

D10nosample<-setdiff(mM3,D10) 

D10nosample 

D10nosample^2+2*D10nosample+2 

D10nosamplereflect<-(-(D10nosample^2+2*D10nosample+2)) 

D10nosamplereflect 

yE.sample<-yE[idx==10] 

yE.sample 

yEnosample<-setdiff(yE,yE.sample) 

yEnosample 

TNWE10<-sum(yE.sample)+sum((3/4*((1-(M.sample-D10)/h1)^2))*yE.sample) 

TNWE10 

TRE10<-(sum(yE.sample)/sum(D10))*sum(mM3) 
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TRE10 

Pi<-n1/N1 

THTE10<-sum(yE.sample/n1*N1) 

THTE10 

TtrE10<-sum(yE.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-D10nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+D10nosamplereflect)/h1)^2)*yEnosample) 

TtrE10 

 

D11<-mM3[idx==11] 

D11 

mean(D11) 

D11nosample<-setdiff(mM3,D11) 

D11nosample 

D11nosample^2+2*D11nosample+2 

D11nosamplereflect<-(-(D11nosample^2+2*D11nosample+2)) 

D11nosamplereflect 

yE.sample<-yE[idx==11] 

yE.sample 

yEnosample<-setdiff(yE,yE.sample) 

yEnosample 

TNWE11<-sum(yE.sample)+sum((3/4*((1-(M.sample-D11)/h1)^2))*yE.sample) 

TNWE11 

TRE11<-(sum(yE.sample)/sum(D11))*sum(mM3) 

TRE11 

Pi<-n1/N1 

THTE11<-sum(yE.sample/n1*N1) 

THTE11 

TtrE11<-sum(yE.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-D11nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+D11nosamplereflect)/h1)^2)*yEnosample) 

TtrE11 

D12<-mM3[idx==12] 

D12 

mean(D12) 

D12nosample<-setdiff(mM3,D12) 

D12nosample 

D12nosample^2+2*D12nosample+2 

D12nosamplereflect<-(-(D12nosample^2+2*D12nosample+2)) 

D12nosamplereflect 

yE.sample<-yE[idx==12] 

yE.sample 

yEnosample<-setdiff(yE,yE.sample) 

yEnosample 

TNWE12<-sum(yE.sample)+sum((3/4*((1-(M.sample-D12)/h1)^2))*yE.sample) 

TNWE12 

TRE12<-(sum(yE.sample)/sum(D12))*sum(mM3) 

TRE12 

Pi<-n1/N1 

THTE12<-sum(yE.sample/n1*N1) 

THTE12 

TtrE12<-sum(yE.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-D12nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+D12nosamplereflect)/h1)^2)*yEnosample) 

TtrE12 

D13<-mM3[idx==13] 

D13 

mean(D13) 
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D13nosample<-setdiff(mM3,D13) 

D13nosample 

D13nosample^2+2*D13nosample+2 

D13nosamplereflect<-(-(D13nosample^2+2*D13nosample+2)) 

D13nosamplereflect 

yE.sample<-yE[idx==13] 

yE.sample 

yEnosample<-setdiff(yE,yE.sample) 

yEnosample 

TNWE13<-sum(yE.sample)+sum((3/4*((1-(M.sample-D13)/h1)^2))*yE.sample) 

TNWE13 

TRE13<-(sum(yE.sample)/sum(D13))*sum(mM3) 

TRE13 

Pi<-n1/N1 

THTE13<-sum(yE.sample/n1*N1) 

THTE13 

TtrE13<-sum(yE.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-D13nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+D13nosamplereflect)/h1)^2)*yEnosample) 

TtrE13 

D14<-mM3[idx==14] 

D14 

mean(D14) 

D14nosample<-setdiff(mM3,D14) 

D14nosample 

D14nosample^2+2*D14nosample+2 

D14nosamplereflect<-(-(D14nosample^2+2*D14nosample+2)) 

D14nosamplereflect 

yE.sample<-yE[idx==14] 

yE.sample 

yEnosample<-setdiff(yE,yE.sample) 

yEnosample 

TNWE14<-sum(yE.sample)+sum((3/4*((1-(M.sample-D14)/h1)^2))*yE.sample) 

TNWE14 

TRE14<-(sum(yE.sample)/sum(D14))*sum(mM3) 

TRE14 

Pi<-n1/N1 

THTE14<-sum(yE.sample/n1*N1) 

THTE14 

TtrE14<-sum(yE.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-D14nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+D14nosamplereflect)/h1)^2)*yEnosample) 

TtrE14 

D15<-mM3[idx==15] 

D15 

mean(D15) 

D15nosample<-setdiff(mM3,D15) 

D15nosample 

D15nosample^2+2*D15nosample+2 

D15nosamplereflect<-(-(D15nosample^2+2*D15nosample+2)) 

D15nosamplereflect 

sindex<-sample(300,20) 

yE.sample<-yE[idx==15] 

yE.sample 

yEnosample<-setdiff(yE,yE.sample) 

yEnosample 

TNWE15<-sum(yE.sample)+sum((3/4*((1-(M.sample-D15)/h1)^2))*yE.sample) 
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TNWE15 

TRE15<-(sum(yE.sample)/sum(D15))*sum(mM3) 

TRE15 

Pi<-n1/N1 

THTE15<-sum(yE.sample/n1*N1) 

THTE15 

TtrE15<-sum(yE.sample)+1/(n1*h1)*sum((3/4*(1-(Mnosample-D15nosamplereflect)/h1)^2)+(3/4*(1-

(Mnosample+D15nosamplereflect)/h1)^2)*yEnosample) 

TtrE15 

conditional_bias1=c(13.48,15.65,15.10,13.51,14.47,15.02,12.32,12.99,13.33,12.10,13.93,15.14,13.39,1

2.65,15.60) 

length(conditional_bias1) 

conditional_bias2=c(2.99,3.70,4.56,-0.5,-0.72,-0.09,6.56,4.62,1.28,0.86,3.89,-0.64,1.14,0.006,8.23) 

length(conditional_bias2) 

conditional_bias3=c(2.02,5.54,4.73,-0.93,1.89,1.74,4.54,4.35,2.27,3.76,4.02,2.43,2.27,3.88,9.43) 

length(conditional_bias3) 

conditional_bias4=c(5.79,4.72,4.46,4.13,4.49,4.83,4.40,4.37,4.6,3.90,4.69,4.40,4.27,4.06,4.56) 

length(conditional_bias4) 

xbar.bar=c(0.7971,0.8233,0.8524,0.8565,0.9056,0.9479,0.9693,0.9711,0.9716,1.005,1.0287,1.0352,1.1

214,1.1413,1.3012) 

length(xbar.bar) 

plot(xbar.bar,conditional_bias1,type="l",col="1",lty=1,ylim=c(0,30),xlab="X.BAR.BAR",ylab="CON

DITIONAL BIAS",main="LINEAR FUNCTION") 

lines(xbar.bar,conditional_bias2,type="l",col="2",lty=2) 

lines(xbar.bar,conditional_bias3,type="l",col="3",lty=3) 

lines(xbar.bar,conditional_bias4,type="l",col="4",lty=4) 

legend(1.1,30,c("NADARAYA","RATIO","HORVITZ","TTR"),col=c(1,2,3,4),lty=c(1,2,3,4)) 

 

conditional_bias1=c(16.02,16.37,17.96,17.24,16.53,16.50,16.89,16.42,17.90,18.76,16.63,18.27,16.96,1

7.99,17.01) 

length(conditional_bias1) 

conditional_bias2=c(5.17,3.74,2.98,1.56,0.09,2.75,-0.96,1.66,3.59,7.61,2.20,4.89,-0.88,2.77,0.35) 

length(conditional_bias2) 

conditional_bias3=c(5.32,-0.25,2.75,0.45,-0.54,3.07,-0.56,2.45,3.66,7.71,2.39,4.26,-0.53,2.80,0.35) 

length(conditional_bias3) 

conditional_bias4=c(-0.5,-0.57,-0.78,-0.55,-0.6,-0.65,-0.79,-0.79,-0.86,-1.05,-0.68,-1.03,-0.74,-0.89,-

0.66) 

length(conditional_bias4) 

xbar.bar=c(1.0839,1.1205,1.1387,1.1642,1.1675,1.1707,1.1792,1.1815,1.1867,1.1874,1.1909,1.1937,1.

1986,1.2092,1.2176) 

length(xbar.bar) 

plot(xbar.bar,conditional_bias1,type="l",col="1",lty=1,ylim=c(0,30),xlab="X.BAR.BAR",ylab="CON

DITIONAL BIAS",main="QUADRATIC FUNCTION") 

lines(xbar.bar,conditional_bias2,type="l",col="2",lty=2) 

lines(xbar.bar,conditional_bias3,type="l",col="3",lty=3) 

lines(xbar.bar,conditional_bias4,type="l",col="4",lty=4) 

legend(1.18,30,c("NADARAYA","RATIO","HORVITZ","TTR"),col=c(1,2,3,4),lty=c(1,2,3,4)) 

conditional_bias1=c(1.28,1.56,1.52,1.94,1.22,0.89,1.16,1.96,0.57,1.63,1.16,1.10,1.32,0.79,1.84) 

length(conditional_bias1) 

conditional_bias2=c(0.005,3.79,1.83,10.39,1.3,10.71,1.01,6.49,5.85,2.29,3.97,2.15,0.28,3.11,4.35) 

length(conditional_bias2) 

conditional_bias3=c(0.48,3.59,1.86,4.32,1.05,5.10,1.39,6.65,7.17,2.02,2.76,2.36,0.21,4.19,6.50) 

length(conditional_bias3) 

conditional_bias4=c(-0.03,0.31,0.19,0.26,-0.06,0.14,-0.06,0.50,0.14,0.16,-0.03,-0.05,-0.01,-0.03,0.46) 

length(conditional_bias4) 
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xbar.bar=c(0.0422,0.0743,0.0852,0.1064,0.1232,0.1241,0.1304,0.1396,0.1426,0.1520,0.1540,0.1587,0.

1654,0.1911,0.2392) 

length(xbar.bar) 

plot(xbar.bar,conditional_bias1,type="l",col="1",lty=1,ylim=c(0,30),xlab="X.BAR.BAR",ylab="CON

DITIONAL BIAS",main="EXPONENTIAL FUNCTION") 

lines(xbar.bar,conditional_bias2,type="l",col="2",lty=2) 

lines(xbar.bar,conditional_bias3,type="l",col="3",lty=3) 

lines(xbar.bar,conditional_bias4,type="l",col="4",lty=4) 

legend(0.15,30,c("NADARAYA","RATIO","HORVITZ","TTR"),col=c(1,2,3,4),lty=c(1,2,3,4)) 
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