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Abstract

Tsetse flies (Glossina spp.) transmit parasitic African trypanosomes (Trypanosoma spp.),

including Trypanosoma congolense, which causes animal African trypanosomiasis (AAT).

AAT detrimentally affects agricultural activities in sub-Saharan Africa and has negative

impacts on the livelihood and nutrient availability for the affected communities. After tsetse

ingests an infectious blood meal, T. congolense sequentially colonizes the fly’s gut and pro-

boscis (PB) organs before being transmitted to new mammalian hosts during subsequent

feedings. Despite the importance of PB in blood feeding and disease transmission, little is

known about its molecular composition, function and response to trypanosome infection. To

bridge this gap, we used RNA-seq analysis to determine its molecular characteristics and

responses to trypanosome infection. By comparing the PB transcriptome to whole head and

midgut transcriptomes, we identified 668 PB-enriched transcripts that encoded proteins

associated with muscle tissue, organ development, chemosensation and chitin-cuticle

structure development. Moreover, transcripts encoding putative mechanoreceptors that

monitor blood flow during tsetse feeding and interact with trypanosomes were also

expressed in the PB. Microscopic analysis of the PB revealed cellular structures associated

with muscles and cells. Infection with T. congolense resulted in increased and decreased

expression of 38 and 88 transcripts, respectively. Twelve of these differentially expressed

transcripts were PB-enriched. Among the transcripts induced upon infection were those

encoding putative proteins associated with cell division function(s), suggesting enhanced

tissue renewal, while those suppressed were associated with metabolic processes, extra-

cellular matrix and ATP-binding as well as immunity. These results suggest that PB is a
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muscular organ with chemosensory and mechanosensory capabilities. The mechanorecep-

tors may be point of PB-trypanosomes interactions. T. congolense infection resulted in

reduced metabolic and immune capacity of the PB. The molecular knowledge on the com-

position and putative functions of PB forms the foundation to identify new targets to disrupt

tsetse’s ability to feed and parasite transmission.

Author summary

Tsetse flies are economically important insects responsible for transmitting African try-

panosomes, which cause debilitating and fatal diseases in humans and animals in sub-

Saharan Africa. In the tsetse vector, trypanosomes undergo complex developmental pro-

cesses in the midgut, culminating with the generation of mammalian infective forms in

the salivary glands for Trypanosoma brucei spp. and in the proboscis (PB) for Trypano-
soma congolense and Trypanosoma vivax. Molecular studies on tsetse’s PB, and its interac-

tions with trypanosomes, are limited. We used RNA-seq analysis to obtain molecular

information on the putative products associated with tsetse’s PB and characterized PB

responses to infection with T. congolense. Based on the predicted putative protein profile,

the PB appears to be a muscular organ with mechanoreceptors and may have the capacity

to sense and respond to chemical cues. Parasite infections of the PB lead to decreased

expression of genes whose products are associated with metabolic and immune functions.

These data provide insights into tsetse-trypanosome interactions in the PB organ and

identify potential candidate targets that can be further explored to develop biotechnologi-

cal strategies to reduce transmission of trypanosomes by tsetse flies.

Introduction

Tsetse flies (Glossina spp.) are vectors of African trypanosomes, which are protozoan parasites

that cause human and animal African trypanosomiases (HAT and AAT, respectively) through-

out sub-Saharan Africa [1]. AAT caused by Trypanosoma brucei brucei, Trypanosoma vivax
and Trypanosoma congolense leads to emaciation and stunted growth of domesticated animals

that subsequently produce less meat and milk [2]. These pathologies negatively impact the

nutritional well-being of people living in endemic areas and result in a loss of 4.75 billion USD

for the African economy each year [3]. Currently, no vaccines exist for either HAT or AAT,

and disease control relies mainly on treatment of infected hosts and/or reduction of tsetse pop-

ulations via trapping and pesticide application [3]. T. congolense is considered to be the most

virulent and economically detrimental AAT-causing trypanosome [4, 5] and this is even aggra-

vated by increasing levels of parasite resistance to drugs [6, 7] hindering treatment effective-

ness. While vector control can effectively interfere with disease transmission, it experiences

sustainability challenges; and over-reliance on insecticide based applications is environmen-

tally undesirable and costly. Consequently, new methods to treat and reduce disease transmis-

sion are needed. In-depth molecular knowledge of the biological interactions that shape

trypanosome infection dynamics in tsetse can lead to identification of novel disease control

methods.

The life cycle of African trypanosomes involves sequential steps of differentiation and pro-

liferation in both mammalian host and tsetse vector [8]. Mammalian stage parasites are desig-

nated as bloodstream forms (BSF). Once ingested by tsetse, BSF trypanosomes encounter
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robust physical and immunological barriers that include the gut peritrophic matrix [9, 10] and

a plethora of host immune molecules that are anti-parasitic in nature, including antimicrobial

peptides [11–14], reactive oxygen species (ROS) [15], tsetse EP proteins [16], trypanolysin

[17–19], peptidoglycan recognition protein-LB [20, 21], lectins and lectin-like molecules [22–

24] and other proteolytic enzymes [25–27]. Only in a small percentage of susceptible flies can

trypanosomes establish infections and continue their development to colonize the salivary

glands (SGs; for T. brucei spp.) or proboscis (PB; for T. congolense) (Fig 1) [28]. In the SG or

PB, the parasite population consists of a number of developing epimastigote stages that attach

to the luminal walls of the organs prior to undergoing metacyclogenesis [8, 29, 30], suggesting

that these organs play key roles in trypanosome development and transmission.

While a number of molecular studies have addressed tsetse’s SG and its response to infec-

tion with T. brucei complex parasites, little is known about the PB and its interaction with T.

congolense. The PB is an essential appendage of the head that processes gustatory input to aid

in locating and ingesting food [31]. Tsetse has a long piercing PB with a distinct basal bulb, a

cuticle-lined tissue that comprises part of the foregut (Fig 1). The PB consists of three parts

(labium, hypopharynx and labrum) that are surrounded by a pair of maxillary palps. In tsetse’s

PB, only the labrum and hypopharynx are colonized by trypanosomes, while some parasites

also attach to the cibarium [29, 30]. Previous scanning and transmission electron microscopic

examinations of tsetse’s PB revealed the presence of different types of mechanoreceptors,

nerves, neurons [32] and a network of muscles at the thecal bulb [33]. The mechanoreceptors

interact with the parasites that formed colonies, or ‘rosettes’, in the proximal third of the

Fig 1. The life cycle of Trypanosoma congolense. Passage of T. congolense through the tsetse fly host. Colors represent different parasite developmental

stages within distinct tsetse tissues. Tsetse ingests bloodstream-form T. congolense (1), which migrate to the fly’s midgut and differentiate into procyclic forms

(2). Procyclic parasites then cross tsetse’s peritrophic matrix and move anteriorly through the ectoperitrophic space to the cardia where they again

differentiate into long trypomastigotes (3). Finally, trypomastigotes colonize the PB (thecal bulb, labrum and hypopharynx) and differentiate into the

epimastigote and then metacyclic forms (4), the latter of which are inoculated into a vertebrate host during a subsequent feed (5).

https://doi.org/10.1371/journal.pntd.0006057.g001
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labrum where these labral sensory sensilla mechanoreceptors are located [32, 34–36]. Parasites

attached to the cibarium [30] also undergo vigorous division [29].

Beyond the predicted role of PB in feeding and an organ critical for trypanosome develop-

ment and transmission, no information exists on the molecular components and function of

the tsetse’s PB or on its responses to infection with T. congolense. Here, we utilized a high

throughput RNA-sequencing approach to investigate the putative molecular composition and

predicted function(s) of this organ as well as its responses to T. congolense infection. We also

performed microscopic analysis of the PB to further understand the cellular structure of this

organ.

Materials and methods

Ethical consideration

This work was carried out in strict adherence to the recommendations in the Office of Labora-

tory Animal Welfare at the National Institutes of Health and the Yale University Institutional

Animal Care and Use Committee. The experimental protocol was reviewed and approved by

the Yale University Institutional Animal Care and Use Committee (Protocol 2014–07266).

Tsetse flies and trypanosomes

Tsetse flies (Glossina morsitans morsitans) used in this study were reared in the Yale University

insectary at 24˚C and 50% relative humidity. All flies used in this study were maintained on

blood commercially supplied by Hemostat Laboratories (Dixon, CA). All flies were fed at 48

hour intervals using an artificial membrane-based system [37].

Trypanosoma congolense [Trans Mara strain, variant antigenic type (VAT) TC13] [38] was

kindly provided by Prof. Utpal Pal of Department of Veterinary Medicine, University of Mary-

land. Bloodstream form (BSF) parasites were amplified in rats following the strictly approved

protocol (Protocol 2014–07266). At peak parasitemia, BSF was harvested from blood, ali-

quoted and cryopreserved in liquid nitrogen till used.

Tsetse infections and dissections

Teneral (newly eclosed and unfed adults) G. m. morsitans males were provided an infectious

blood meal containing 8x106 BSF T. congolense (VAT TC13) per ml of blood in their first

blood meal. After the first infectious blood meal, the flies were maintained on normal blood

for the duration of the study. Uninfected control flies were maintained on normal blood only.

Twenty-eight days post-challenge (dpc), all flies were dissected 72 h after their last blood meal.

Infection status of the PB (defined here as labrum, hypopharynx and thecal bulb) was micro-

scopically determined on Zeiss Axiostar Plus Light microscope at 400x. To dissect the PB,

mouth parts were detached from the head and two needles (one in each hand) were used to

tease apart the labrum and hypopharynx from the labium. The labium was then detached from

the labrum and hypopharynx at the junction of the thecal bulb. This left the labrum, hypophar-

ynx and thecal bulb attached together. Infected labrum and hypopharynx were snap frozen in

liquid nitrogen and stored at -80˚C until use. In the current study, a total of 7.8% (284/3655)

of parasite challenged tsetse had T. congolense infections in the PB. All infected PBs, as well as

an equal number of PBs dissected from age-matched uninfected control flies, were divided

into two independent biological replicates, each of which contained 130 probosces for subse-

quent analysis.
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RNA extraction, cDNA library preparation and sequencing

Total RNA was extracted using TRizol according to the manufacturer’s (Thermo Fisher Scien-

tific Inc. CA, USA) protocol. Total RNA was DNase treated (Thermo Fisher Scientific Inc. CA,

USA) and the absence of DNA contamination was confirmed by PCR amplification using

primers that target tsetse’s β-tubulin and glyceraldehyde-3-phosphate dehydrogenase (gapdh)

genes. RNA quantity and quality were determined using a Bioanalyzer 2100 (Agilent, Palo

Alto, CA, USA). For cDNA library preparation, 900 ng of high quality total RNA (RNA integ-

rity number >7.0) was used. The libraries were constructed from the two infected and two

uninfected replicates using NEBNext Ultra Directional RNA Library Prep Kit (New England

Biolabs, Inc. USA) according to the manufacturer’s protocol. Each replicate of the four librar-

ies was prepared independently. Libraries were barcoded for Illumina HiSeq 2000 sequencing

(unpaired 75 bases) at Yale Center for Genome Analysis. The NCBI sequence read archive

(SRA) number for the G. m. morsitans PB transcriptomes described herein is SRP093552.

Bioinformatics analysis of tsetse PB datasets

CLC Genomic Workbench (CLC bio, Cambridge, MA) was used for all RNA-seq analyses.

The four RNA-seq libraries (two-infected and two-uninfected controls) were assessed to deter-

mine read quality, and low quality reads were either trimmed or removed using CLC’s quality

check and trimming algorithm, respectively. Subsequently, tsetse ribosomal RNA, symbiont

(Sodalis glossinidius) and T. congolense reads were removed by mapping the RNA-seq datasets

to tsetse 28S and 18S rRNA sequences [39], Sodalis genome [40] and T. congolense IL 3000

transcripts version 9 obtained from TritrypDB (www.tritrypdb.org; [41]), respectively. The

TC13 strain used in this study is different from the strain for which the whole genome data

was generated, but both parasite strains had originated from Transmara in Kenya [42]. All the

remaining reads were used for downstream analyses. The infected and uninfected PB RNA-

seq datasets were mapped to the G. m. morsitans Yale transcripts GmrY version 1.4 obtained

from VectorBase (https://www.vectorbase.org/, [43]. Mappings were performed using a CLC-

based algorithm that allows for two mismatches per read (with a maximum of 10 hits per

read), with at least 80% of each read matching the gene at 95% identity. Reads per kilobase per

million mapped (RPKM) was used as a proxy to quantify and compare relative transcript

abundance between treatments [44]. The relative number of reads for each transcript in rela-

tion to total number of read counts for each RNA-seq dataset was established to calculate p-

values based on the Baggeley’s test method following Bonferroni analysis [45]. Relative fold

change (FC) between infected and uninfected transcripts was calculated as a ratio of their

RPKM values, and normalized based on the number of reads obtained from each library. The

normalized values were used in this study. Transcripts that scored p-value� 0.05 (corrected

normalized false discovery rate, FDR) were considered differentially expressed (DE). Tran-

scripts that displayed at least 1.5 FC in abundance were considered significantly DE and were

used to putatively determine molecular response of tsetse’s PB to T. congolense infection.

Tissue enriched gene expression analysis was performed using the Level Of eXpression

(LOX) software [46], with datasets obtained from the uninfected PB (this study) and those pre-

viously obtained from uninfected tsetse midgut (NCBI SRA number, PRJNA314786) [47] and

whole head (NCBI SRA number, SRP090041). LOX employs a Markov Chain Monte Carlo

based method to estimate the level of expression and integrates sequence count tallies that are

normalized by total expressed sequence count to provide expression levels for each gene rela-

tive to all treatments as well as by Bayesian credible intervals. The LOX estimates across PB,

midgut and whole head transcriptomes were assembled to compare transcript expression lev-

els across each tissue. For each tissue, two values were calculated using the upper bound of the

Tsetse proboscis - Trypanosoma congolense interactions
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95% confidence interval (CI) or the lower bound of the 95% CI from LOX. To determine if the

expression of a transcript in tissue 1 was higher than tissue 2, we calculated the fold difference

between the lower bound of expression in tissue 1 and the upper bound of expression in tissue

2. Conversely, to determine if the expression of a transcript in tissue 2 was higher than tissue 1,

we calculated the fold difference between the lower bound of tissue 2 and the upper bound of

tissue 1. Gene Ontology (GO) terms were assigned to each G. m. morsitans transcript via Blas-

t2GO software version 3.0 [48–50] using the blastx algorithm at a maximum e-value 10−3 to

search against NCBI’s non-redundant protein database. The Blast2GO analysis was used to

assign GO terms to genes that were preferentially expressed in the PB and GO term enrich-

ment was determined via Fisher’s Exact test at an FDR, p-value� 0.05 [49]. Pathway enrich-

ment in infected and uninfected PB samples was determined using ProfCom [51]. Immunity

associated transcripts were identified as previously described [52] based on sequence homol-

ogy with D. melanogaster immune transcripts (http://flybase.org/); [53] and those sorted from

the recently published G. m. morsitans genome [54].

Transcriptome validation using real time quantitative PCR

Total RNA was prepared (and DNase treated) from infected and uninfected PBs (n = 5 biologi-

cal replicates, each containing 25 PBs) as described above. These biological samples were inde-

pendent of the ones used for RNA-seq library construction. cDNA was synthesized with oligo-

dT primers and random hexamers using the iScript cDNA synthesis reaction kit (Bio-Rad,

Catalog No. 170–8891) according to the manufacturer’s protocol. Real time quantitative PCR

(RT-qPCR) was performed in technical duplicate (for each biological replicate) on eight

selected DE transcripts (S1 Table). In order to validate our transcriptome data, we initially

selected three genes; beta-tubulin, GAPDH and 28S ribosomal RNA, for reference gene identi-

fication. The expression level of each gene was evaluated between infected and uninfected PB

samples by RT-qPCR analysis. Our analysis revealed that the expression of gapdh was the least

variable with the standard deviation (SD) of the crossing point (CP) being 0.88 based on Best-

Keeper analysis [55]. The beta-tubulin was found to be slightly variable with the SD of the CP

of 1.08 while 28S rRNA was the most variable. All RT-qPCR results were thus normalized to

tsetse gapdh, quantified from each biological replicate. A Pearson’s correlation test was used to

validate the transcriptome data.

Light and fluorescent microscopy

Probosces from four weeks-old adult male flies were dissected in PBS and immediately fixed in

PBS containing 4% PFA. Tissues were stained as previously described with modifications [56].

The fixed tissues were transferred to 4% PFA, 0.1% Triton-X100 PBS for 24h at 4˚C, and then

incubated with Alexa Fluor 488 Phalloidin (Life Technologies; 10 units/ml) and DAPI (3μg/

ml) in PBS for 6 hours. Tissues were washed (2x 5min) with PBS between all steps. After 6

hour of incubation with Alexa Fluor 488 Phalloidin and DAPI followed by washing, tissues

were then mounted on a glass slide and covered with glycerol. The images were observed

using Zeiss Axio Imager 2 fluorescence microscope and captured using AxioVision (Zeiss)

software. Processing of the images was done using Fiji version of ImageJ software [57].

Results

Description of the PB transcriptomes

To determine the molecular composition and putative function(s) of the PB organ and how it

responds to infection with T. congolense, we performed a global gene expression analysis from
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uninfected and infected-PB. After sequencing, we obtained 19 to 68 million high-quality

reads across all four RNA-seq libraries. The variation in the number of reads obtained is

due to the different depth we achieved in sequencing of each library. Quality control mea-

sures (trimming of low quality reads and removal of tsetse ribosomal RNA and symbiont

reads) removed < 3.5% of the total reads generated (S1A Fig). Important to note was detec-

tion of reads corresponding to tsetse’s endosymbiont Sodalis, which suggests that this

microorganism may be among the constituents transmitted to the mammalian host at the

bite site. T. congolense specific reads in infected-PB samples accounted for an average of

over 4.0% of the total reads (S1A Fig). To identify tsetse expression profile of the PB, RNA-

seq reads that passed quality control were mapped to the G. m. morsitans protein coding

transcript from VectorBase (https://www.vectorbase.org/; [43]). Over 50% of the transcripts

were categorized as having low relative abundance (�100 unique reads), while only 1.02%

of the transcripts were categorized as having high relative abundance (>10,000 unique

reads) (S1B Fig).

We next identified transcripts that were preferentially expressed in the PB organ using LOX

(Level Of eXpression) software. Unlike most tools used for gene expression analyses, LOX soft-

ware can estimate the level of transcript expression from multiple high-throughput expression

datasets generated using diverse experimental methodologies [46]. We compared the PB tran-

scriptome to those generated from G. m. morsitans midgut [47] and whole head tissues (con-

taining PB) from uninfected flies. Transcripts were considered to be preferentially expressed in

the PB when the expression levels were�3-fold higher in the PB relative to the midgut and

whole head. Only transcripts with at least an RPKM� 5 and 20 unique reads mapping to it in

either of the transcriptomes were considered. Based on these parameters, 668 (5.09%) genes

were considered to be preferentially expressed in the PB (hereafter referred to as ‘PB-enriched’)

(S1C Fig, S1 Table). Twenty-five genes were expressed at comparable levels in both PB and mid-

gut tissues, while 2859 genes were expressed in both PB and whole head datasets (S1C Fig). PB-

enriched transcripts and the complete PB RNA-seq dataset were used for further analyses.

To obtain a global snapshot of the molecular mechanisms that underlie PB functions, the

putative PB-enriched gene products were subjected to gene ontology (GO) analysis (Fig 2, S1

Table). With respect to the biological processes analysis, gene products broadly associated with

muscle structure and activity, organ development (salivary gland development, mesoderm

development, open tracheal system development) and conditioned taste aversion were

enriched. For the molecular function category, gene products involved in binding (actin bind-

ing, sequence specific DNA-binding, histone deacetylase binding and enhancer binding),

structural constituent of muscles and channel activities (potassium channel activity and gluta-

mate calcium ion channel activity) were enriched. In the cellular component analysis, products

associated with muscle genes and ionotropic glutamate receptor complexes were enriched.

Moreover, transcription factor activity and signaling related gene products were enriched in

biological processes and molecular function categories. These GO classifications suggest that

the PB is a muscular organ with the capacity to sense and respond to chemical cues from

within its internal or external environment.

Using SignalP [58] and TMHMM [59] software packages, we next screened PB-enriched

datasets for putative proteins with signal peptides (SP) and/or trans-membrane (TM) domains,

respectively. Of the 668 putative PB-enriched transcripts, 148 were predicted to code for pro-

teins with at least one or more TM domains, 62 were predicted to possess a SP domain and

28 were predicted to contain both SP and TM domains (S1 Table). Notable among the genes

encoding TM proteins included five of the seventeen G. m. morsitans tetraspanins [60], major
facilitator superfamily, ionotropic receptors (IRs), and innexins. Transcripts of two takeout (to)

genes, one of which encodes a protein with a TM domain and the other with both TM and SP
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domains, are also among those that were PB-enriched (S1 Table). The IRs are chemosensory

proteins responsive to a variety of odors, acids, amines, aldehydes and humidity [61, 62]. The

G. m. morsitans genome encodes 30 chemosensory IR genes [63], four of which were found to

be preferentially expressed in the PB suggesting the involvement of PB in chemosensory and

olfactory processes.

Tsetse’s PB contains sensory receptors (sensilla), which apart from monitoring rate of

blood flow during tsetse feeding, also appear to interact with trypanosomes [32, 35, 64]. Based

on microscopy analysis, these sensory hairs were referred to as LCl mechanoreceptors [32].

We searched the PB transcriptome for expression of transcripts that putatively encode mecha-

noreceptors. To identify these transcripts, we first obtained the Drosophila mechanoreceptor

gene sequences by searching the FlyBase database for “mechanoreceptor’ query. This resulted

in 44 transcripts. Using the putative protein sequences of the 44 transcripts, we Blastp searched

the G. m. morsitans peptide dataset in VectorBase using an E-value 10−10. This query resulted

in the identification of 12 putative G. m. morsitans mechanoreceptor proteins (S2 Fig) that

were abundantly expressed in the PB relative to the head and midgut tissues. Identification of

mechanoreceptor transcripts in PB is in line with the presence of these putative receptors in

the labrum.

Microscopic analysis of the tsetse’s PB

Microscopic analysis of tsetse’s PB, using Alexa Fluor 488 Phalloidin staining, demonstrated

the presence of muscles at the base of the organ in the thecal bulb and where the PB attaches to

the fly’s head (S3A–S3C Fig). DAPI staining revealed the presence of nuclei aligned along the

lateral side of the proximal region (closer to the head) of the labrum (S3D Fig), indicating that

cells line the organ’s lumen. These cells occupy the region of the organ where the mechanore-

ceptors interacting with parasites were previously described [32, 34–36]. The microscopy

results, in conjunction with the RNA-seq data, support the muscular nature of tsetse’s PB and

its potential ability to express receptor targets that may act as docking sites for T. congolense
during metacyclogenesis process.

Differential gene expression and enrichment analysis of parasite

infected PB

Both PB-enriched and complete PB library datasets were used to characterize the transcrip-

tional response of the PB to infection with T. congolense parasites. Upon infection, 401 (3.06%)

transcripts were DE, of which 38 (0.94%) and 88 (2.11%) were significantly (FC�1.5) up- and

down-regulated, respectively (Fig 3A, S2 Table). When the PB-enriched dataset was consid-

ered, 43 (6.44%) transcripts were DE with seven and five being significantly up- and down-reg-

ulated, respectively (Fig 3A, S1 Table and S2 Table). The transcriptional response of the PB

upon T. congolense infection was validated via RT-qPCR on eight DE genes selected from the

infected PB dataset (S1 Text). The RT-qPCR data exhibited a high level of correlation with

results obtained from the RNA-seq analysis (Pearson correlation = 0.97447216), thus confirm-

ing the accuracy of PB infected and uninfected transcriptomes (S2 Text).

To gain insight into the nature of the molecular response(s) following infection with T. con-
golense, we subjected the significantly DE (FC2�1.5) putative PB gene products to GO en-

richment analysis using Profcom [51] (Fig 3B). Our analysis showed that putative proteins

Fig 2. Functional classification of PB-enriched genes based on gene ontology (GO). Genes preferentially expressed in the tsetse fly

proboscis were analyzed using Blast2GO gene ontology tool. The terms were categorized into biological processes, molecular function and

cellular processes. The number of genes assigned to each term in different categories are indicated in brackets.

https://doi.org/10.1371/journal.pntd.0006057.g002
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associated with protein binding pathway were significantly up-regulated, while putative prod-

ucts associated with metabolic processes, extracellular region and ATP-binding were down-

regulated (Fig 3B). These results suggest that T. congolense infection may adversely affects the

metabolic processes of the PB organ.

We then analyzed putative functions of the DE gene products to predict processes that may

be affected upon trypanosome infection. Our data revealed that two muscle and/or cytoskele-

ton related proteins, Fibrilin-2 and Unconventional myosin XVIIIa, were up- and down-regu-

lated respectively, while the remaining gene products were only moderately affected (Fig 4A).

One cytoplasmic actin-5C up-regulated in the infected PB was also increased in T. brucei
infected tsetse SG [65] as well as its orthologue in Plasmodium infected mosquito Anopheles
gambiae. In A. gambiae, this protein forms complexes with immune factor AgMDL1, thus

enabling it to function as an extracellular pathogen recognition factor in antibacterial defense

[66]. The expression of transcripts whose products are associated with oxidoreduction were

also affected in infected PB. We observed a general decreased expression of oxidoreduction

transcripts, except for sestrin, which was significantly upregulated (Fig 4B). The expression of

sestrin is increased in cells exposed to several stress factors, such as DNA-damage, oxidative

stress and hypoxia [67–69]. Among those decreased were detoxification genes: cytochromes-
P450 (CYPs), cytochrome b5-related and chorion peroxidase. Chorion peroxidase mediates

NADH oxidation leading to the formation of hydrogen peroxide (H2O2) [70], thus its reduced

Fig 3. Differential expression and gene ontology (GO) analysis of genes exhibiting increased and

decreased expression during trypanosome infection. (A) Differentially expressed genes between T.

congolense infected PB and uninfected PB of tsetse fly. (B) Significantly enriched pathways determined

through ProfCom [51]. * Differentially expressed dataset ** Entire Drosophila genes in ProfCom database.

The ticks in both the Y and X axis are positioned in a Log10 scale.

https://doi.org/10.1371/journal.pntd.0006057.g003
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expression suggests decreased H2O2 levels in infected-PB. Another group of transcripts

reduced in expression upon infection, encoded proteins linked with cell adhesion/junction

and extracellular matrix (Fig 4C).

Fig 4. Heat maps representation of differentially expressed transcripts in different functional categories (A-G). Heat maps obtained by plotting the

normalized expression profiles (RPKM, Log2 transformed) of individual transcripts in uninfected and infected conditions in the R-package software. The heat

maps (dendrograms) were clustered using euclidean distance calculation and ward.D clustering methods. The clusters were then manually separated to

various functional categories.

https://doi.org/10.1371/journal.pntd.0006057.g004
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In addition, we noted that transcript levels for genes encoding proteins linked with cell

growth, cell division and survival were increased in expression upon infection (Fig 4D). This

expression profile suggests an increased rate of cell division upon infection, likely indicating tis-

sue renewal. Our results also showed differential expression of genes that encode proteins asso-

ciated with signal transduction and neurotransmission (Fig 4E). Alteration in the expression of

such proteins had been documented in the head of T. brucei infected G. palpalis gambiensis, sug-

gesting that the presence of trypanosomes may alter the function(s) of tsetse’s nervous system

[71]. Lastly, we also detected decreased levels of transcripts for six major SG proteins in infected

PB (Fig 4F). The expression levels of these transcripts are also significantly reduced in T. brucei
infected SG [52, 65, 72]. Expression of SG-protein encoding genes in the PB was surprising. We

speculate that these transcripts may have originated from tiny pieces of SG tissues (at the SG-

hypopharynx junction) that contaminated our PB preparation. Other DE transcripts included

peritrophin A, low density lipoprotein receptor and leishmalynosin like peptide protein (Fig 4G).

Expression of immune-associated genes in parasite infected PB

The insect immune system is a critical mediator of vector competence [73]. As such, we inter-

rogated the DE datasets for candidates that may encode proteins with immune related func-

tions. For this analysis, we first extracted immunity-related genes that were previously

identified in G. m. morsitans genome project [54]. Secondly, we identified Drosophila immu-

nity genes by combining genes whose GO functions are associated with immunity in FlyBase

and Drosophila genes functionally involved in immunity [74, 75]. Using tBLASTx, we com-

pared tsetse PB DE transcripts against the set of Drosophila immune-related genes. We identi-

fied 41 immune related transcripts that were affected upon infection of the PB (Table 1, S3

Table 1. Tsetse immunity transcripts differentially expressed between infected-PB compared to uninfected PB.

Increased expression

Gene ID Gene Description Fold change FDR, p-value Uninfected RPKM Infected RPKM

GMOY005707-RA Down syndrome cell adhesion molecule 2.46 0.003313035 34.05 83.9

GMOY010320-RA Tob (Ecdysone-induced gene 71Ee) 1.54 1.16563E-07 13340.1 20532.9

GMOY011342-RA Growth-blocking molecule 1.43 0.006993913 811.5 1163.25

GMOY006991-RA Secreted Wg-interacting molecule 1.21 0.003529879 713 864.35

GMOY001164-RA GTpase Rab2 1.12 0.034953043 2768.3 3121.15

Decreased expression

Gene ID Gene Description Fold change FDR, p-value Uninfected RPKM Infected RPKM

GMOY010972-RA Larval serum protein-like 3 -5.43 1.00E-06 100.5 18.5

GMOY010728-RA Larval serum protein-like 4 -5.38 0.049613273 15.6 2.9

GMOY000810-RA Glucose dehydrogenase -3.18 0.015445653 17.65 5.55

GMOY001557-RA Major royal jelly 1 -2.93 0.049375898 20.05 6.85

GMOY003789-RA Hemolectin -2.55 0.014028789 6019.45 2364.15

GMOY003159-RA Eater -2.52 0.026091303 527.45 209.5

GMOY001221-RA Glucose dehydrogenase -1.99 2.28673E-07 139.6 70.2

GMOY011147-RA CG12213 -1.96 2.18454E-05 322.35 164.85

GMOY000466-RA Salivary C-type lectin -1.93 4.78488E-06 138.75 71.75

GMOY011959-RA Down syndrome cell adhesion molecule -1.78 0.005805792 96.35 54.2

GMOY010768-RA Serine Protease Immune Response Integrator -1.64 0.000833901 311.15 189.2

GMOY008966-RA Serine protease 7 -1.57 0.037956883 133.55 85.3

GMOY010673-RA Transferrin -1.53 0.001584412 1428.25 934.8

GMOY002009-RA Serrate -1.50 0.000261495 207.4 138.35

https://doi.org/10.1371/journal.pntd.0006057.t001
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Table). Of these DE genes only four [Tob, Growth-blocking peptide, down syndrome cell adhe-
sion molecule (Dscam) and Secreted Wg-interacting molecule] were up-regulated. All remaining

genes were significantly down-regulated in the infected PB dataset (Table 1). Dscam is a gene

that undergoes alternative splicing resulting in multiple proteins that function in the nervous

systems of both vertebrates and invertebrates [76], and it also play a role in invertebrate immu-

nity [77–80]. The down-regulated transcripts in the infected PB included two prophenoloxi-
dases, hemolectin, C-type lectins, transferrin, eaters, major royal jelly, glucose dehydrogenases
and Dscam variant (Table 1, S3 Table). Reduced level of Lectins in the tsetse midgut during the

initial stages of parasite infection increases midgut parasite infection rates [81, 82]. The Major

royal jelly protein has antimicrobial properties is expressed in response to bacterial infection

in honeybees [83, 84], while Transferrin plays an important role in the immune system of

insects and vertebrates [85, 86]. Transferrin expression is induced in flies that house bacterial

infections but suppressed in the midgut of T. brucei infected tsetse and in baculovirus infected

Spodoptera littoralis [86, 87]. The decreased expression of transferrin in infected PB may pro-

vide parasites with a more hospitable environment with greater iron availability and lower lev-

els of free radicals [86]. In addition, serine protease inhibitor (Serpin11) and serine proteases,

including serine protease immune response integrator and serine protease 7, were also down-reg-

ulated in expression (Table 1, S3 Table).

Transcript levels of genes encoding secreted and transmembrane

proteins

The PB-enriched dataset and the complete PB transcriptome library were used to analyze the

expression profile of transcripts encoding proteins with TM and SP domains (Fig 5, S4 Table).

Secreted proteins may be injected into the vertebrate host bite site during blood meal acquisi-

tion and as such may play critical role(s) in host-parasite interactions. A total of 148 DE tran-

scripts encoded proteins with TM and/or SP domains, of which 12 were preferentially

expressed in the PB (Fig 5A, S1 Table). Of the 148 transcripts, 95 encode proteins with TM

domains. Trypanosome infection resulted in increased expression of amino acid permease,

serotonin receptor, slimfast homolog-2, tetraspanins 42Ei, late bloomer and xenotropic/polytropic
receptor genes. Conversely, fatty acyl-reductases, adenylate cyclase type-2 and synaptic vesicle
transporter TM encoding transcripts were down-regulated in infected PB (Fig 5B, S4 Table).

Serotonin is a neurotransmitter involved in the regulation of feeding and digestion in animals

[88]. In insects, Serotonin is involved in post-ingestion examination of food, a process called

conditioned taste aversion [89, 90]. We also identified 35 transcripts encoding putative

secreted proteins. The expression of seven of these transcripts was induced in infected PB,

with the expression of the remaining transcripts being reduced (Fig 5A and 5C, S4 Table).

The down-regulated transcripts included fibrinogen A, venom carboxylases, serine protease
easter-like, takeout-like and two transcripts coding for hypothetical proteins. Takeout
encodes a putative juvenile hormone binding protein linked to circadian rhythm and reg-

ulation of feeding behavior in Drosophila [91–93]. The role of takeout in tsetse in modu-

lating feeding is unknown, and whether its decreased expression in the PB upon infection

impacts the fly’s feeding biology remains to be determined. These results indicate that try-

panosome infection results in decreased expression of most secreted proteins in the PB

similar what was observed in T. brucei infected tsetse SG [52, 65, 72] suggesting that T.

congolense infection likely influences fly feeding behavior. For transcripts coding for pro-

teins with both TM and SP motifs, 18 were identified (Fig 5A and 5D, S4 Table), four of

which were up-regulated upon infection with the remaining 14 being reduced in trypano-

some infected PB.
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Discussion

The proboscis of insect vectors is a component of the mouthparts that is involved in blood

meal acquisition and parasite transmission. The present study provides insights into the

molecular composition and function of tsetse’s PB as well as its response to T. congolense infec-

tion. The enrichment of IRs and glutamate-gated calcium ion channel proteins, normally asso-

ciated with chemosensation [94], coupled with the expression of proteins functionally linked

with conditioned taste aversion (CTA) that enables insects to discriminate between toxic and

nutritious foods [89] in our PB-enriched datasets, suggest that tsetse PB have a gustatory func-

tion as well. In D. melanogaster, IRs in the gustatory organ [95] are thought to function in

Fig 5. Summary of specific differentially expressed protein encoding genes that contain transmembrane and/or signal-peptide domains in the

proboscis. (A) Read abundance and fold difference in gene expression. Genes in red are PB-enriched while those in blue are from the complete PB

transcriptome. (B-D) Fold change (based on RPKM differences) in expression of protein encoding genes that contain transmembrane (TM; B), signal peptide

(SP; C) or both TM and SP domains (D) in T. congolense infected proboscis. This analysis is based on RNA-seq data from PB-enriched and complete PB

transcriptome datasets and contain only genes whose combined RPKM and number of TM domains is at least 1000 and 3 respectively for TM proteins and a

combine RPKM of at least 500 for SP.

https://doi.org/10.1371/journal.pntd.0006057.g005
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detecting tastants [62, 96]. Apart from the gustatory roles, the PB may also assess the feeding

environment before taking a blood meal as described in mosquitoes [31, 97, 98] and Drosophila
[99]. The CTA response has been demonstrated in several organisms [89, 90] which enable

them detect and avoid consuming foods containing virulent pathogens [100, 101]. Collectively,

our findings suggest that tsetse’s PB may also function in host selection and gustation choices,

including avoidance of toxic foods during feeding. Further functional studies can shed light on

how these attributes in tsetse’s PB are linked to the antennae chemosensory apparatus and their

potential role in facilitating narrow host selection and exclusive haematophagy in tsetse flies.

The extensive network of muscles at the thecal bulb (visualized via microscopy), and identi-

fication of muscle-associated transcripts in PB-enriched dataset, may ensure the structural

integrity of the organ [102, 103], enable PB movement [33] and pumping [104–106] processes,

all of which are important for blood feeding. Our microscopy results also revealed the presence

of cells lining the lateral proximal third of the labrum wall, a region associated with a high den-

sity of attached parasites in infected flies [34, 107, 108]. This region also contains a group of

sensory receptors (LC1 mechanoreceptors [32]) known to monitor the rate of blood flow dur-

ing tsetse feeding [35] and interact with T. congolense and T. vivax parasites that firmly attach

at their base (of mechanoreceptors) forming rosette structures [34, 64, 107, 109, 110]. We

detected the expression of 12 distinct genes encoding putative mechanoreceptors in our PB

RNA-seq data. The cells (identified in this study) and expression of mechanoreceptors in the

same region of the labrum, suggest that these cells may synthesize the receptors that trypano-

somes may attach to during their development. Further functional studies would provide

insight into which tsetse receptors are involved in trypanosome-proboscis interactions.

Our analysis of T. congolense infected PB shows that the majority of transcripts were signifi-

cantly down-regulated, with only a few being up-regulated. The up-regulated transcripts

encoded for proteins associated with cell cycle and cell survival processes, which reflect an

enhanced cell division and tissue growth and maintenance upon infection. This mirrors the

previous findings in G. m. morsitans SG infected with T. brucei [52]. The significantly down-

regulated transcripts encoded metabolic, immunity, cell adhesion/junction and extracellular

matrix related proteins, and secreted proteins. Among the putative secreted proteins detected

in the PB transcriptome, six were major SG-proteins, which were also reduced in T. brucei
infected SG [52, 65, 72]. The impact of this reduction, in conjunction with physical interfer-

ence of parasites with phagoreceptors and reduced labrum diameter by rosette forming para-

sites, can lead to prolonged tsetse feeding time with multiple feeding attempts before the fly

can reach full engorgement [35, 36, 72, 111, 112]. A combination of these phenomenon in par-

asite transmission and host infection success has been described [34, 35, 72, 110].

Invertebrate immune system can distinguish various pathogens ranging from viral to fungal

invaders, and may get triggered when insects get infected with pathogens. In this study, we

found several immunity genes that were DE upon T. congolense infection of the PB. Of the DE

immune genes, was two variants of Dscam of which one variant was upregulated and the other

decreased. Dscam gene is capable of producing many different isoforms [113, 114] and can

exhibit pathogen specific immune memory [115]. RNA silencing of Dscam in Drosophila and

Anopheles gambiae resulted in an impaired ability to phagocytose bacteria [79] and resist Plas-
modium [80], respectively. In mosquitoes, pathogen-specific splice forms of Dscam are

expressed upon immune challenge [80, 116]. Future investigations are warranted on the full

variants of Dscam encoded in tsetse and on the role of the splice variants expressed in the PB.

We also observed decreased expression of transcripts associated with immunity, including lec-
tins, hemolectin (Hml) and transferrin upon infection, suggesting a reduction of tsetse defense

systems. Lectins and Hml function by activating the complement system and agglutinating

parasite surface carbohydrates [117, 118]. Reduced levels of Lectins in the tsetse midgut during
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initial stages of trypanosome infection increase infection rates and infection maturation in the

fly midgut [81, 82]. Hml is an antimicrobial protein [119] with multiple domains, including

von Willebrand factor C and D, and two discoidin domains [120, 121]. In Drosophila, silencing

of hml led to bleeding defects upon injury [122]. It remains to be seen if Lectins (some of

which have been shown to possess discoidin motifs [119, 123]) and Hml can interfere with

establishment of epimastigotes in tsetse’s PB. Taken together, these results suggest that T. con-
golense infection negatively affects immune function in tsetse’s PB, a situation that can facili-

tate parasite survival and development in this niche.

We identified several tetraspanin transcripts in the PB-enriched dataset, of which two were

up-regulated upon infection. Tetraspanins (Tsps) are molecular facilitators linked with cell

adhesion/junction, the extracellular matrix and function in host-pathogen interactions [124–

129]. Increased expression of tsps have been reported in T. brucei infected SGs of G. m. morsi-
tans [65] and Dengue virus infected A. aegypti [130]. Although the importance of this induction

in the tsetse system is unknown, Tsps are thought to be involved in fly-parasite interactions

[60]. On the other hand, the expression of other cell adhesion/junction and extracellular matrix

linked transcripts were down-regulated, contrary to results reported from T. brucei infected SGs

[65]. The attachment of T. congolense parasites to the PB wall is an important aspect of parasite

life cycle, and ensures that the fly remains infected for its entire life span. Attachment of the par-

asite to the PB via its flagellum results in the formation of a hemi-desmosome-like junctional

complex [110], and is mediated by an unidentified ligand receptor interaction. Functional stud-

ies can potentially elucidate the direct interactions between putative PB cell surface proteins or

TM proteins identified here and T. congolense.

In conclusion, results from this study suggest that tsetse’s PB is a muscular organ that may

also exhibit chemosensory functions. Infection with T. congolense led to the reduced expres-

sion of gene products associated with metabolic processes and the immune system of the fly.

These phenotypes potentially create an environment that facilitates parasite survival and trans-

mission in the insect vector, or may represent vector responses that enable it to survive under

stress. Results from this study provide a foundation that will enable functional genomics stud-

ies aimed at determining the role(s) of PB proteins in tsetse feeding activities and tsetse-try-

panosome interactions.

Supporting information

S1 Fig. An overview of G. m. morsitans proboscis RNA-transcriptome. (A) The total num-

ber of PB RNA-seq reads after quality control measures. (B) Proportion of reads that mapped

per transcript. (C) Number of transcripts preferentially expressed in the PB (PB-enriched data-

set) relative to the whole head and whole midgut transcriptomes. aPB-Proboscis—Trypano-

some infection status; bBRep—Biological replicates; cTotal reads—Total number of raw reads

obtained after RNA-sequencing; dAfter Trimming—Number of reads after removal of low

quality reads; eAfter MR to T. congo—Number of reads that remained after mapping to Trypa-
nosoma congolense parasite transcript version 9.0; fAfter RNA removal—Number of reads that

remained after mapping to 18S and 28S rRNA; gAfter Symb removal—Number of reads that

remained after mapping to tsetse endosymbiont, Sodalis glossinidius; hMR to Gmm—The

number of reads that mapped to Glossina morsitans transcript (assembly GmorY1.4).
(TIF)

S2 Fig. Graphical representation on transcript abundance of genes encoding mechanore-

ceptors. The heat map was generated by plotting the normalized RPKM values (Log2 trans-

formed) of individual transcript from uninfected fly tissues, clustered using euclidean distance

calculation and ward.D clustering methods. PB proboscis, WH whole head, WMG whole
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midgut, SG salivary gland.

(TIF)

S3 Fig. Microscopic illustration of tsetse’s proboscis after Alexa Fluor 488 Phalloidin stain-

ing. (A, B and C) Tsetse’s labrum at its site of attachment to the thecal bulb, after removing the

labium. The shape and general structure is observed by light microscopy, and muscles are fluo-

rescence green after staining with phalloidin (dyes actin). Shown are the ventral (A), side (B)

and dorsal (C) views of the thecal bulb. White arrowheads identify muscles that holds together

the entire PB and the thecal bulb. Red arrowheads identify muscles that attach the thecal bulb

to the fly’s head. (D) Side view of the labrum and hypophraynx stained with DAPI and

observed using fluorescent microscopy. The picture is oriented from head (left) to the tip of

the proboscis (right). A chain of nuclei can be observed distributed along the dorsum of the

labrum.

(TIF)

S1 Table. Sheet 1. Genes with enriched expression in the proboscis (PB) compared to midgut

[47] and whole head compared between uninfected PB and PB-infected with trypanosomes.

The genes preferentially expressed in the PB (PB-enriched) was obtained by comparing expres-

sion of individual genes from tissues of uninfected flies. Sheet 2. Functional classification of

genes preferentially expressed in the PB (PB-enriched) with genes in our datasets and those

from the reference. Sheet 3. Organization of data for LOX software analysis.

(XLSX)

S2 Table. RNA-seq analysis comparing uninfected proboscis and those infected with try-

panosomes from the complete transcriptome.

(XLSX)

S3 Table. Immune-associated genes with differential expression based on RNA-seq analy-

sis comparing uninfected PB and PB infected with trypanosomes.

(XLSX)

S4 Table. Genes encoding transmembrane and/or secreted proteins.

(XLSX)

S1 Text. Primers utilized for tsetse fly PB validation.

(DOCX)

S2 Text. Validation of tsetse RNA-seq results with qPCR.

(DOCX)
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