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Abstract  Nonparametric estimation of population parameters for finite populations has been used with great success for 
data that fit the independent and identically distributed framework. However, most of these approaches do not extend to data 
from multistage samples. In this work, we present a method for developing a nonparametric distribution function for a finite 
population that has been stratified. Proportional allocation of sampling weights has been utilized alongside kernel weights. 
Asymptotic properties of the estimator are derived and are compared with those of existing model based estimators using the 
simulated sets of data. The results show that applying the bias reduction technique to a stratified population greatly improves 
precision of the estimator. 
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1. Introduction 
Estimation of population parameters is a fundamental 

issue in statistics because such quantities are necessary 
components in most theoretical studies and practical 
applications. The main idea of nonparametric statistics is to 
make inferences about unknown quantities without resorting 
to parametric reduction of the problem. Example, suppose 
that a random variable X has a distribution function F. The 
approach taken by parametric statistics is to assume that F 
belongs to a family of distributions that can be explained by a 
smaller number of parameters. These parameters are then 
estimated and inference is made about the quantities of 
interest. 

Clearly, the parametric approach relies on a tremendous 
reduction of the original problem. It assumes that all 
uncertainty regarding the distribution function can be 
reduced to just one or two unknown numbers. If these 
assumptions are true, then there is nothing wrong in making 
the assumptions. However if they are false, the resulting 
inference will be questionable and we might miss the 
interesting patterns in the data.  

On the contrary, nonparametric statistics tries to make as 
few assumptions as possible about the data. For instance, it 
allows F to be any function provided it satisfies the definition  
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of a distribution function. This requires the development of a 
whole new set of tools and instead of estimating parameters, 
the nonparametric approach estimates the function. 

A number of estimation procedures have been developed 
to estimate the distribution of a random variable in the past 
(Zhao et al., 2013). For more insight on this see (Chambers 
and Dunstan, 1986), (Kuk, 1993), (Rao et al 1990) and 
(Dorfman & Hall, 1993). (Breunig, 2008) also considered a 
weighted, nonparametric density estimator for stratified 
samples. He derived the optimal bandwidth and provided a 
plug-in bandwidth when all strata are normally distributed. 
(Chambers and Clark, 2012) gave a general nonparametric 
methodology for estimating a distribution function for a 
stratified population using a linear regression model.  

Despite the success of using the nonparametric approach 
in the estimation of population parameters, there exists some 
tendency of the estimators being biased. Moreover, kernel 
smoothers tend to have boundary problems such as the bias 
and variance trade-off. There are many approaches to 
reducing the bias, but most of them do so at the cost of an 
increase in the variance of the estimator. Under smoothing 
will reduce the bias but will have a tendency of generating 
spurious peaks. Higher order smoothers can also be used but 
while this will lead to a smaller bias, the smoother will have a 
larger variance (Hengartner et al., 2009). 

(Linton and Nielsen, 1994) developed a multiplicative 
technique for bias reduction and (Burr et al., 2010) have 
since used the approach in the smoothing of low resolution 
gamma spectra. The results obtained showed that the 
technique helped in the reduction of bias with no or 
negligible increase in variance. (Onsongo et al., 2018) also 
developed a nonparametric estimator for a finite population 
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distribution function via simple random sampling without 
replacement with the aid this technique. 

This paper considers estimation of a nonparametric 
estimator for finite population total and derivation of its 
asymptotic properties of a nonparametric distribution 
function estimator for a stratified population by utilizing the 
bias correction technique proposed by (Linton and Nielsen, 
1994). The results obtained by (Linton and Nielsen, 1994) 
showed that the estimator of the regression function had 
desirable properties compared to existing estimators 
including solving the boundary problems hence the 
motivation to use it. 
Outline of the paper 

In section 2, we propose an estimator for finite population 
distribution function for a stratified population using a bias 
correction technique. In section 3, asymptotic properties of 
the estimator are derived. Empirical simulation of the results 
is given in section 4 and the conclusion of the findings is 
given in section 5. 

2. Proposed Estimator 
In this section, we develop a nonparametric estimator for a 

distribution function in the event of stratification of a finite 
population. 

Consider a finite population of 𝑁  units that can be 
classified into 𝐻 strata each of size 𝑁ℎ where  
ℎ = 1, 2, … ,𝐻 such that 𝑁1 + 𝑁2 + ⋯+ 𝑁𝐻 = 𝑁. 

Let 𝑋ℎ𝑖 , 𝑖 = 1, 2, … ,𝑁ℎ be the auxiliary variable for the 
ℎ𝑡ℎ  stratum with corresponding survey measurement 
𝑌ℎ𝑖 , 𝑖 = 1, 2, … ,𝑁ℎ from a common univariate distribution 
function. 

Suppose that a simple random sample of size 𝑛ℎ is drawn 
without replacement from the ℎ𝑡ℎ  stratum such that the 
sample proportion 𝑓ℎ = 𝑛ℎ

𝑁ℎ
→ 1 as 𝑛ℎ → 𝑁ℎ and 𝑁ℎ → ∞. 

Then, the empirical distribution function for a finite 
population is defined as  

𝐹𝑁( 𝑡 )  =  1
𝑁
∑ Δ(𝑡 − 𝑦𝑖) 𝑁
𝑖=1           (1) 

The corresponding estimator of a distribution function for 
a stratified population is defined as  

𝐹�𝑁𝑦𝑆 (𝑡) = 1
𝑁
∑ 𝑁ℎ𝐻
𝑖=1 � 1

𝑁ℎ
∑ Δ(𝑡 − 𝑦ℎ𝑖)
𝑁ℎ
𝑖=1 �  

= 1
𝑁
∑ 𝑁ℎ𝐻
𝑖=1 𝐹ℎ𝑦(𝑡)                  (2) 

Where Δ denotes the step function of a given set, 𝑡 is the 
𝛼– quantile and 𝑖 denotes the observation made from the 
ℎ𝑡ℎ stratum. 
𝐹ℎ𝑦(𝑡)  is the ℎ𝑡ℎ  stratum distribution function for the 

random variable 𝑌. 
Let 𝑠  be a sample of 𝑛ℎ  units drawn from the ℎ𝑡ℎ 

stratum via simple random sampling without replacement 
and 𝑗 ∈ 𝑟 ∈ ℎ = (𝑁ℎ − 𝑠) be the non-sampled units in the 
ℎ𝑡ℎ stratum. 

Suppose the auxiliary information is known for all 
elements in the population while the survey variable is only 
observed for the sample elements. 

Further, suppose that the survey variables are generated 
using a super population model defined by 

𝑌ℎ𝑖 = 𝜂(𝑥ℎ𝑖) + 𝜎(𝑥ℎ𝑖)𝑒ℎ𝑖           (3) 
Where 𝑒ℎ𝑖′𝑠 are independent and identically distributed 

random variables with zero mean and variance 𝜎2(𝑥ℎ𝑖) with 
𝐸(𝑌ℎ𝑖) = 𝜂(𝑥ℎ𝑖) and 

𝐶𝑜𝑣�𝑌ℎ𝑖 ,𝑌ℎ𝑗� = �𝜎
2(𝑥ℎ𝑖) 𝑓𝑜𝑟 𝑖 = 1, 2, … ,𝑁ℎ

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� 

Where 𝜂(𝑥ℎ𝑖)  and 𝜎2(𝑥ℎ𝑖)  are assumed to be smooth 
functions of 𝑥ℎ𝑖. 

The predictive form of the empirical distribution function 
for a stratified population under the model based approach 
therefore becomes 

𝐹�𝑁𝑦𝑆 (𝑡) = 1
𝑁
∑ 𝑁ℎ𝐻
ℎ=1 � 1

𝑁ℎ
�
∑ Δ(𝑡 − 𝑦ℎ𝑖)𝑖∈𝑠∈ℎ

+∑ Δ�𝑡 − 𝑦ℎ𝑗�𝑗∈𝑟∈ℎ
��  (4) 

In this work, we propose the estimator for equation (4) as 

𝐹�𝑀𝐵𝐶
(𝑆) (𝑡) = 1

𝑁
∑ 𝑁ℎ𝐻
ℎ=1 � 1

𝑁ℎ
�

∑ Δ(𝑡 − 𝑦ℎ𝑖)𝑖∈𝑠∈ℎ

+∑ 𝐺� �𝑡 − �̂�𝑛ℎ�𝑥ℎ𝑗��𝑗∈𝑟∈ℎ
��  (5) 

Where �̂�𝑛ℎ�𝑥ℎ𝑗�  is the model-based nonparametric 
estimator for 𝜂(𝑥ℎ𝑗) and 𝐺� �𝑡 − �̂�𝑛ℎ�𝑥ℎ𝑗�� is the estimated 
distribution function of the residuals defined by       
𝑒ℎ𝑗 =  𝑦ℎ𝑗 − �̂�(𝑥ℎ𝑗)  using elements drawn from the ℎ𝑡ℎ 
stratum. 

Since ∑ Δ(𝑡 − 𝑦ℎ𝑖)𝑖∈𝑠∈ℎ  is known from the sample drawn, 
the task reduces to that of estimating         
∑ 𝐺� �𝑡 − �̂�𝑛ℎ�𝑥ℎ𝑗��𝑗∈𝑟∈ℎ . 

To do this, the multiplicative bias correction technique is 
employed. 

Suppose that (𝑋ℎ1,𝑌ℎ1), (𝑋ℎ2,𝑌ℎ2), … , �𝑋ℎ𝑁ℎ ,𝑌ℎ𝑁ℎ�  are 
𝑁  independent pairs of random variables with the pair 
(𝑋ℎ𝑖 ,𝑌ℎ𝑖) being real valued. 

Define a pilot smoother of the regression function as 
𝜂�𝑛ℎ(𝑥ℎ𝑖) = ∑ 𝑤𝑖(𝑥ℎ𝑖; 𝑙)𝑦ℎ𝑗𝑖∈𝑠∈ℎ          (6) 

Where 𝑤𝑖(𝑥ℎ𝑖; 𝑙)  are the Nadaraya-Watson kernel 
weights defined by 
𝑤𝑖(𝑥ℎ𝑖; 𝑙) = Kl(x−𝑥ℎ𝑖)

∑ Kl(x−𝑥ℎ𝑖)𝑖∈𝑠∈ℎ
 and 𝑙 is the bandwidth. 

𝐾(. )  is a function that is continuous, symmetric and 
bounded with real values. 

Let the ratio 𝜆ℎ𝑖 = 𝑦ℎ𝑖
𝜇�𝑛(𝑋ℎ𝑖)

 be a noisy estimate of the 
inverse relative estimation error of the smoother 𝜂�𝑛ℎ given 
by 𝜂(𝑋)

 𝜂�𝑛ℎ(𝑋ℎ𝑖)
. 

Smoothing 𝜆ℎ𝑖 yields 

𝛼�(𝑥ℎ𝑖) = ∑ 𝑤𝑖(𝑥ℎ𝑖; 𝑙)
𝑛ℎ
𝑖=1 𝜆ℎ𝑖 = ∑ 𝑤𝑖(𝑥ℎ𝑖; 𝑙)

𝑦𝑖
𝜂�𝑛(𝑋ℎ𝑖)

𝑛ℎ
𝑖=1   (7) 

Equation (7) can then be used as a multiplicative 
correction of the pilot smoother in equation (6) which can 
now be defined by 
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�̂�𝑛ℎ(𝑥ℎ𝑖) = 𝛼�(𝑥ℎ𝑖)𝜂�𝑛ℎ(𝑥ℎ𝑖)            (8) 

Assumptions 
The following assumptions are made in the estimation of 

𝜂𝑛ℎ(𝑥ℎ𝑖) 
1.  The regression function is twice continuously 

differentiable everywhere. 
2.  The bandwidth 𝑙  is such that 𝑙 → 0, 𝑛ℎ𝑙 → ∞  , as 

𝑛ℎ → ∞. 
Using equation (7) in equation (8) yields 

�̂�𝑛ℎ(𝑥ℎ𝑖) = ∑ 𝑤𝑖(𝑥ℎ𝑖; 𝑙)
𝜂�𝑛ℎ(𝑥)

𝜂�𝑛ℎ(𝑋ℎ𝑖)
𝑛ℎ
𝑖=1 𝑦𝑖              (9) 

�̂�𝑛ℎ(𝑥ℎ𝑖) = ∑ 𝑤𝑖(𝑥ℎ𝑖; 𝑙)
𝑛ℎ
𝑖=1

𝜂�𝑛ℎ(𝑥)

𝜂�𝑛ℎ(𝑋ℎ𝑖)
𝜂(𝑋ℎ𝑖) +  

∑ 𝑤𝑖(𝑥ℎ𝑖; 𝑙)
𝑛ℎ
𝑖=1

𝜂�𝑛ℎ(𝑥)

𝜂�𝑛ℎ(𝑋ℎ𝑖)
�𝜀ℎ𝑖 + 𝜂(𝑋ℎ𝑖)�𝑏𝑛ℎ(𝑥) − 𝑏𝑛ℎ(𝑋ℎ𝑖)�� +  

∑ 𝑤𝑖(𝑥ℎ𝑖; 𝑙)
𝑛ℎ
𝑖=1

𝜂�𝑛ℎ(𝑥)

𝜂�𝑛ℎ(𝑋ℎ𝑖)
𝜀ℎ𝑖�𝑏𝑛ℎ(𝑥) − 𝑏𝑛ℎ(𝑋ℎ𝑖)� + 𝑂𝑃 �

1
𝑛ℎ𝑙
�  

                                 (10) 
For a detailed review on the derivation of �̂�𝑛ℎ(𝑥ℎ𝑖)  see 

(Onsongo et al., 2018). 
The estimator for the distribution function for a stratified 

population therefore becomes 

 

3. Asymptotic Properties of the 
Estimator under Stratified Sampling 

3.1. Asymptotic Unbiasedness 

Consider the asymptotic bias of the nonparametric 
estimator is defined as 

1
𝑁
𝐸�𝐹�𝑀𝐵𝐶

(𝑆) (𝑡) − 𝐹𝑁( 𝑡 ) �             (10) 

Where 𝐹�𝑀𝐵𝐶
(𝑆) (𝑡) − 𝐹𝑁( 𝑡 )  is the estimated bias under 

stratified sampling. 
Let 𝐺�(𝑡) = ∑ 𝑤𝑖𝑗

∗ 𝐼(𝑦ℎ𝑖 − �̂�(𝑥ℎ𝑗))𝑖∈𝑠∈ℎ  where     
𝑤𝑖𝑗∗ =

𝑤𝑖𝑗
∑ 𝑤𝑖𝑗𝑖∈𝑠∈ℎ

 where 𝑡 is the 𝛼 -quantile and 𝑤𝑖𝑗 are the 

weights that only take non-zero values for sample units 
𝑖 ∈ 𝑠 ∈ ℎ with 𝑋ℎ𝑗 close to 𝑋ℎ𝑖. 

Equation (5) can then be written as 

𝐹�𝑀𝐵𝐶
(𝑆) (𝑡) =  1

𝑁
�

∑ Δ(𝑡 − 𝑦ℎ𝑖)𝑖∈𝑠∈ℎ

+∑ ∑ 𝑤𝑖𝑗∗𝑖∈𝑠∈ℎ Δ�𝑡 − �̂�ℎ𝑗�𝑗∈𝑟∈ℎ
�  

𝐸�𝐹�𝑀𝐵𝐶
(𝑆) (𝑡)� = 1

𝑁
�

∑ 𝐸[Δ(𝑡 − 𝑦ℎ𝑖)]𝑖∈𝑠∈ℎ

+∑ ∑ 𝑤𝑖𝑗∗ 𝐸𝑖∈𝑠∈ℎ �Δ�𝑡 − �̂�ℎ𝑗��𝑗∈𝑟∈ℎ
�  

However Δ(𝑡 − 𝑦ℎ𝑖)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖�𝑃(𝑦ℎ𝑖 ≤ 𝑡)�  and 
∑ Δ(𝑡 − 𝑦ℎ𝑖)𝑖∈𝑠∈ℎ ~𝐵𝑖𝑛𝑜𝑚�𝑁ℎ𝑃(𝑦ℎ𝑖 ≤ 𝑡)� implying that 

𝐸�𝐹�𝑀𝐵𝐶
(𝑆) (𝑡)� = 𝑛

𝑁
𝐹𝑦(𝑡) + 𝐹𝑒(𝑡)

𝑁
           (12) 

Next, 

𝐸[𝐹𝑁( 𝑡 )]  =  𝐸 �1
𝑁
∑ Δ(𝑡 − 𝑦𝑖)𝑁
𝑖=1 � = 𝐹𝑦(𝑡)   (13) 

Substituting the results in equation (12) and equation (13) 
back to equation (10) yields 

1
𝑁
𝐸�𝐹�𝑀𝐵𝐶

(𝑆) (𝑡) − 𝐹𝑁( 𝑡 )� =
𝐹𝑒(𝑡)
𝑁2 − �

𝑁 − 𝑛
𝑁2 �𝐹𝑦(𝑡) 

                          =
1
𝑁
�
𝐹𝑒(𝑡)
𝑁

− �1 −
𝑛
𝑁
�𝐹𝑦(𝑡)� 

As 𝑛
𝑁
→ 1 and 𝑁 → ∞, �𝐹𝑒(𝑡)

𝑁
− �1 − 𝑛

𝑁
�𝐹𝑦(𝑡)� → 0 

𝐹�𝑀𝐵𝐶
(𝑆) (𝑡) is therefore asymptotically unbiased. 

3.2. Asymptotic Variance 
Consider the estimated bias is given by 

𝐹�𝑀𝐵𝐶
(𝑆) (𝑡) − 𝐹𝑁( 𝑡 ) 

= 1
𝑁
∑ �

∑ ∑ 𝑤𝑖𝑗∗𝑖∈𝑠∈ℎ Δ(𝑡 − 𝑦ℎ𝑖)𝑗∈𝑟∈ℎ

− 1
𝑁
∑ Δ�𝑡 − 𝑦ℎ𝑗�𝑗∈𝑟∈ℎ

�𝐻
ℎ=1   

The variance of the estimated bias can therefore be written 
as 

𝑉𝑎𝑟�𝐹�𝑀𝐵𝐶
(𝑆) (𝑡) − 𝐹𝑁( 𝑡 )� = 

𝑉𝑎𝑟 �1
𝑁
∑ �

∑ ∑ 𝑤𝑖𝑗∗𝑖∈𝑠∈ℎ Δ(𝑡 − 𝑦ℎ𝑖)𝑗∈𝑟∈ℎ

−  1
 𝑁
∑ Δ�𝑡 − 𝑦ℎ𝑗�𝑗∈𝑟∈ℎ

�𝐻
ℎ=1 �  

𝑉𝑎𝑟�𝐹�𝑀𝐵𝐶
(𝑆) (𝑡) − 𝐹𝑁( 𝑡 )�  = 

1
𝑁2
�
𝑉𝑎𝑟�∑ ∑ 𝑤𝑖𝑗∗𝑖∈𝑠∈ℎ Δ(𝑡 − 𝑦ℎ𝑖)𝑗∈𝑟∈ℎ �

+ 𝑉𝑎𝑟�∑ Δ�𝑡 − 𝑦ℎ𝑗�𝑗∈𝑟∈ℎ �
�          (14) 

The errors are assumed to be independent and identically 
distributed and therefore have zero covariance. 

Consider 𝑉𝑎𝑟�∑ ∑ 𝑤𝑖𝑗
∗

𝑖∈𝑠∈ℎ Δ(𝑡 − 𝑦ℎ𝑖)𝑗∈𝑟∈ℎ �  and let 
φ�i(𝑡) = ∑ 𝑤𝑖∗Δ(𝑡 − 𝑦ℎ𝑖)𝑖∈𝑠∈ℎ  

Then 
𝑉𝑎𝑟�∑ φ�i(𝑡)𝑗∈𝑟∈ℎ � =   ∑ ∑ Cov(φ�j(𝑡),k∈r∈h φ�i′(𝑡)𝑗∈𝑟∈ℎ ) 

(15) 
With φ�i′(𝑡) = ∑ 𝑤𝑖∗Δ�𝑡 − 𝑦ℎ𝑖′�𝑖∈𝑠∈ℎ  
Define 𝐷𝑖(𝑢) = 𝑃[Δ(𝑢 − 𝑒ℎ𝑖)] 

𝐶𝑜𝑣 �φ�j(𝑡),φ�k(𝑡)� 

= ∑ 𝑤𝑖𝑗∗𝑖∈𝑠∈ℎ 𝑤𝑖𝑘∗ �
𝐷𝑖 �𝑡 − 𝑚𝑎𝑥��̂�ℎ𝑗 , �̂�ℎ𝑘��

−𝐷𝑖�𝑡 − �̂�ℎ𝑗�𝐷𝑖(𝑡 − �̂�ℎ𝑘)
�      (16) 
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Suppose that �̂�ℎ𝑗 < �̂�ℎ𝑘  whenever 𝑗 < 𝑘  and suppose 
that the non-sampled units are labelled from 1 to 𝑁ℎ − 𝑛ℎ. 

Then 
𝑉𝑎𝑟�∑ ∑ 𝑤𝑖𝑗∗𝑖∈𝑠∈ℎ Δ(𝑡 − 𝑦ℎ𝑖)𝑗∈𝑟∈ℎ �  

= ∑ �∑ ∑ 𝑤𝑖𝑗∗ 𝑤𝑖𝑘∗ �
𝐷𝑖 �𝑡 −  𝑚𝑎𝑥��̂�ℎ𝑗 , �̂�ℎ𝑘��

−𝐷𝑖�𝑡 − �̂�ℎ𝑗�𝐷𝑖(𝑡 − �̂�ℎ𝑘)
�𝑁ℎ−𝑛ℎ

𝑘=1
𝑁ℎ−𝑛ℎ
𝑗=1 � 𝑖∈𝑠∈ℎ      

(17) 
Next, 

𝑉𝑎𝑟�∑ Δ(𝑡 − 𝑦ℎ𝑖)𝑗∈𝑟∈ℎ � = ∑ 𝑉𝑎𝑟[Δ(𝑡 − 𝑦ℎ𝑖)]𝑗∈𝑟∈ℎ   

= (𝑁ℎ − 𝑛ℎ)𝑃�𝑦ℎ𝑗 ≤ 𝑡��1 − 𝑃�𝑦ℎ𝑗 ≤ 𝑡��         (18) 

Substituting equations (17) and (18) into equation (14) 
yields 

𝑉𝑎𝑟�𝐹�𝑀𝐵𝐶
(𝑆) (𝑡) − 𝐹𝑁( 𝑡 )� = 

1
𝑁2

⎣
⎢
⎢
⎡∑ �∑ ∑ 𝑤𝑖𝑗∗ 𝑤𝑖𝑘∗ �

𝐷𝑖 �𝑡 − 𝑚𝑎𝑥��̂�ℎ𝑗 , �̂�ℎ𝑘��

−𝐷𝑖�𝑡 − �̂�ℎ𝑗�𝐷𝑖(𝑡 − �̂�ℎ𝑘)
�𝑁ℎ−𝑛ℎ

𝑘=1
𝑁ℎ−𝑛ℎ
𝑗=1 �𝑖∈𝑠

+(𝑁ℎ − 𝑛ℎ)𝑃�𝑦ℎ𝑗 ≤ 𝑡��1 − 𝑃�𝑦ℎ𝑗 ≤ 𝑡�� ⎦
⎥
⎥
⎤
         

(19) 
It is clear from this result that  

lim𝑁→∞ 𝑉𝑎𝑟�𝐹�𝑀𝐵𝐶
(𝑆) (𝑡) − 𝐹𝑁( 𝑡 )� → 0. 

4. Results 
In this section, simulation experiments were done to study 

the performance of the multiplicative bias corrected 
estimator for a stratified population. 

Four populations of size 500 each are generated as 
𝑁(60, 4), 𝑁(75,4), 𝑁(40,3), 𝑁(55,5) such that there is a 
total of 2, 000 auxiliary variables. 

The corresponding survey values 𝑦𝑖 are generated using 
the super-population model 
𝑦𝑖 = 𝜂(𝑥𝑖) + 𝜀𝑖 after which they are stratified according 

to form four strata. Proportional allocation was used to draw 
samples of size 100 from each stratum. 

The estimators 𝐹�𝑁𝑦𝑟𝑜𝑏(𝑡) = 1
𝑁
�

∑ 𝑑𝑖𝑡𝑖∈𝑠

+∑ 𝐺��𝑡 − 𝑏𝑣𝑧𝑗�𝑗∈𝑟
� 

suggested by (Chambers and Clark, 2012) and    
𝐹�𝑅𝐾𝑀(𝑡) = 1

𝑛
∑ 𝐼(𝑦𝑖 ≤ 𝑡)𝑖∈𝑠 + 1

𝑁
∑ 𝐺��𝑡 − 𝑎� − 𝑏�𝑥𝑗�𝑗∈𝑟  

−�1
𝑛
− 1

𝑁
�∑ 𝐺��𝑡 − 𝑎� − 𝑏�𝑥𝑗�𝑖∈𝑠  suggested by (Rao et al 

1990) were then used in the comparison of results. 
Table 1 shows the unconditional Relative Mean Error 

(RME) and Relative Root Mean Error (RRME) for the 
estimators at various values of the quantile 𝛼 (i.e. 0.25, 0.5 
and 0.75). Linear, quadratic and cosine mean functions were 
used to obtain the tabulated results. Similar results and 
conclusions can be obtained using other mean functions such 
as sine, cycle and bump. 

The conditional Relative Mean Error and Relative Root 
Mean Error for an estimator 𝐹�𝑁(𝑡) are calculated as: 
𝑅𝑀𝐸 = 1

𝐹𝑁( 𝑡 )
� 1
100

∑ �𝐹�𝑁𝑦
𝑚(𝑡) − 𝐹𝑁( 𝑡 )�100

𝑟=1 � and 

𝑅𝑅𝑀𝐸 = 1
𝐹𝑁( 𝑡 )

�� 1
100

∑ �𝐹�𝑁𝑦
𝑚(𝑡) − 𝐹𝑁( 𝑡 )�100

𝑟=1 �  

respectively where 𝑚 represents the level of iteration.  
Table 2 shows the conditional Relative Mean Error (RME) 

and Relative Root Mean Error (RRME) for the estimators at 
various values of the quantile 𝛼 (i.e. 0.25, 0.5 and 0.75).  

Comparing the results in Table 1 and Table 2, it can be 
seen that  𝐹�𝑀𝐵𝐶

(𝑆) (𝑡) has minimum Relative Mean Error and 
Relative Root Mean Error followed by  𝐹�𝑁𝑦𝑟𝑜𝑏(𝑡) 𝐹�𝑅𝐾𝑀(𝑡) 
and at all levels of the 𝛼 −quantile. 

 

 

Table 1.  Unconditional Relative Mean Errors and Relative Root Mean Errors 

Mean Function 

𝜶 = 𝟎.𝟐𝟓 

𝑭�𝑴𝑩𝑪
(𝑺) (𝒕) 𝑭�𝑵𝒚𝒓𝒐𝒃(𝒕) 𝑭�𝑹𝑲𝑴(𝒕) 

RME RRMSE RME RRMSE RME RRMSE 
Linear 1.165734*10−3 1.93644∗ 10−4 0.24277 0.07176 0.00352 0.06551 

Quadratic -1.24553∗ 10−4 2.32966∗ 10−6 0.02636 0.01422 0.03381 0.00282 
Cosine 6.21031∗ 10−3 2.03803∗ 10−3 0.33354 0.01809 -0.03358 0.02466 

𝜶 = 𝟎.𝟓 
 RME RRMSE RME RRMSE RME RRMSE 

Linear 4.85723∗ 10−2 2.70539∗ 10−8 0.83112 0.03816 0.02742 0.03904 
Quadratic 6.93889∗ 10−6 2.07065∗ 10−5 0.33992 0.23434 0.02154 0.01949 

Cosine -9.992∗ 10−4 2.08525∗ 10−4 0.17044 0.12143 0.01109 0.07599 

𝜶 = 𝟎.𝟕𝟓 
 RME RRMSE RME RRMSE RME RRMSE 

Linear 7.5287∗ 10−8 1.75111∗ 10−8 0.16864 0.15089 -0.04047 0.03535 
Quadratic 4.92662∗ 10−5 2.60271∗ 10−8 0.17755 0.15877 0.00482 0.03087 

Cosine 2.5326∗ 10−8 1.86036∗ 10−5 0.05416 0.00389 0.00111 0.00041 
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Table 2.  Conditional Relative Mean Errors and Relative Root Mean Errors  

Mean Function 

𝜶 = 𝟎.𝟐𝟓 

𝑭�𝑴𝑩𝑪
(𝑺) (𝒕) 𝑭�𝑵𝒚𝒓𝒐𝒃(𝒕) 𝑭�𝑹𝑲𝑴(𝒕) 

RME RRMSE RME RRMSE RME RRMSE 
Linear 0.00968 0.000758 0.01291 0.04046 0.82558 0.05287 

Quadratic 0.00862 0.000274 0.09595 0.02788 0.46808 0.08229 
Cosine -0.00716 0.002085 0.03846 0.03292 0.01782 0.02193 

𝜶 = 𝟎.𝟓 
 RME RRMSE RME RRMSE RME RRMSE 

Linear 0.00621 0.000698 0.03189 0.02157 0.12696 0.10506 
Quadratic 0.00307 0.001535 0.03295 0.23262 0.53046 0.04119 

Cosine -0.00208 0.012993 0.008253 0.01639 0.00545 0.00343 
𝜶 = 𝟎.𝟕𝟓 

 RME RRMSE RME RRMSE RME RRMSE 
Linear 0.00523 0.00117 0.01704 0.01513 0.07499 0.00363 

Quadratic 0.00348 0.00161 0.01554 0.01393 0.05117 0.00301 
Cosine 0.00237 0.01041 0.00259 0.00586 0.06373 0.08197 

 
 

5. Conclusions 
Use of 𝐹�𝑀𝐵𝐶

(𝑆) (𝑡) has proved to yield results with great 
precision. 𝐹�𝑀𝐵𝐶

(𝑆) (𝑡)  can therefore be used in estimating 
distribution functions for stratified populations in various 
sectors. 
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