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Abstract  The problem of nonparametric estimation of finite population distribution function using multiplicative bias 

correction technique is considered in this paper. A robust estimator of the finite population distribution function based on 

multiplicative bias correction is derived with the aid of a super population model. The properties of the estimator are 

developed and comparative study with the existing model based and design based estimators is carried to assess the 

performance of the estimator developed using the simulated sets of data. It is observed that the estimator is asymptotically 

unbiased and statistically consistent when certain conditions are satisfied. It has been shown that when the model-based 

estimators are used in estimating the finite population total, there exists bias-variance trade-off along the boundary. The 

multiplicative bias corrected estimator has recorded better results in estimating the finite population distribution function by 

correcting the boundary problems associated with existing model based estimators. The simulation results led to the 

suggestion that the multiplicative bias corrected estimator can be highly recommended in survey sampling estimation of the 

finite population distribution function. 
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1. Introduction 

In most scenarios of sample survey, auxiliary information 

is available for all elements in the population under 

consideration. Auxiliary information aids in the prediction of 

finite population parameters and as such it forms a central 

part of sample surveys. The main idea of nonparametric 

statistics is to make inferences about unknown quantities 

without resorting to parametric reduction of the problem. It 

therefore follows that a model–based approach is used to 

increase the precision of the estimators by incorporating 

auxiliary variables. As an approach to such a problem, a 

super population model is used to describe the relationship 

between the auxiliary variable and the study variable. 

Various estimation procedures have been developed to 

estimate the distribution of a random variable in the past 

(Zhao et al., 2013). 

(Chambers and Dunstan, 1986) studied a simple method 

for estimating the distribution  function and the associated  
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quantiles from sample survey data. The study showed that 

the model based estimator offers significant gains when there 

exists a strong linear relationship between the survey 

variable and the auxiliary variable. However, the estimator 

tends to be positively biased when the true variance is 

overstated and negatively biased when the true variance is 

understated. Kuk (1993) used auxiliary information to 

improve the estimation of population distribution function. 

Empirical results suggest that the proposed estimator has 

good robustness properties not enjoyed by the model-based 

estimator of (Chambers and Dunstan, 1986). In survey 

sampling, concern is with the proportion of values, say   , in 

the finite population that are bounded by a given constant. 

Such a proportion is one particular value of the distribution 

function for the finite population. In particular, estimation of 

the distribution function is an important objective mainly 

because it helps to identify the proportion in the population 

whose values for particular variables lie substantially below 

or above the population average (Chambers and Dunstan, 

1986). 

Previously studied estimation procedures used kernel 

smoothers which tend to have boundary problems and 

require modifications at the boundary points. That is, 

towards the boundary points the estimators exhibit trade-off 

between the bias and variance of the estimators. However, 

alternative bias reduction techniques have been formulated. 

For a detailed review see Hardle (1986), (Muller and 
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Stadmuller, 1987) and Fan (1992). This study therefore aims 

at coming up with a nonparametric estimator for the 

distribution function of finite populations using a bias 

corrected technique to counter the shortcomings of the 

previously studied methods of estimation. (Linton and 

Nielsen, 1994) used the multiplicative bias correction 

technique in estimating a nonparametric regression function 

and the results obtained showed that the estimator of the 

regression function had desirable properties compared to 

existing estimators including solving the boundary problems. 

Onsongo (2018) also used the approach by (Linton and 

Nielsen, 1994) in estimating finite population total. 

Outline of the paper 

In section 2, we propose an estimator for finite population 

distribution function using a bias correction technique. 

Asymptotic properties of the estimator are derived in section 

3. Empirical simulation of the results is given in section 4 

and the conclusion of the findings is given in section 5. 

2. Proposed Estimator 

In this section, the exact procedure of estimating the 

population distribution function is now presented.  

Suppose that              are independent and 

identically distributed with corresponding survey 

measurements             from a common univariate 

distribution function.  

The empirical distribution function for finite population is 

then defined by  

          
 

 
            

            (1) 

Where I denotes the indicator function of a given set and t 

is the   - quantile.  

Let s be a sample of n units drawn from a finite population 

via simple random sampling without replacement and 

        be the non-sampled units of the finite 

population. Suppose that Y is the survey variable associated 

with the auxiliary variable X. Then the auxiliary information 

is known for all elements in the population while the survey 

variable is only observed for the sample elements.  

Under the model-based framework, X and Y are assumed 

to follow a super population model. This study restricts 

attention to the linear regression model  

                            (2) 

For          . 

Where the   's are independent and identically distributed 

and            and  

            
                  

           
  

Where       and        are assumed to be smooth 

functions of   .  

Using model (1) as a guide, the predictive form of the 

proposed estimator of the distribution function under the 

model based approach is  

       
 

 
                            (3) 

In this paper, the estimator for equation (3) is proposed as  

          
 

 
                                 (4) 

Where        is the model-based nonparametric estimator 

for       and               is the estimated distribution 

function of the residuals defined by              . 

The task is to estimate the second part of equation (4) and 

to do this, the multiplicative bias correction technique is 

employed.  

Suppose that                           are   

independent pairs of random variables       with real 

values.  

Define a pilot smoother of the regression function as  

           
 
                    (5) 

Where         are the Nadaraya-Watson kernel weights 

defined by         
        

        
 
   

 and l is the bandwidth. 

Then the ratio    
  

       
 is a noisy estimate of the 

inverse relative estimation error of the smoother     given 

by 
    

       
.  

(Burr et al., 2010) showed that this ratio significantly 

smoothens out the regression function since the residuals in 

the numerator will cancel out with the residuals in the 

denominator. 

Smoothing    yields 

              
 
              

  

       
 
     (6) 

Equation (6) can then be used as a multiplicative 

correction of the pilot smoother in equation (5) which can 

now be defined by 

                               (7) 

Assumptions 

The following assumptions are made in the estimation of 

       

1.  The regression function is twice continuously 

differentiable everywhere. 

2.  The bandwidth   is such that               
 . 

Using equation (6) in equation (7) easily yields 

                
      

       
 
             (8) 

Now suppose that 

 

 

                          
 
                 

 
                                  (9) 

Then 
      

       
 in equation (8) can be expanded as follows 
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                 (10) 

Where 
             

      
       and 

              

      
        

Applying the binomial expansion to                     
  

 gives 

                    
  

                          
   which further reduces to 

                    
  

                                          (11) 

where          is the remainder term that involves the terms x and   . 

Using equation (11) in equation (10) yields 

      

       
 

      

      
                                                   (12) 

Substituting equation (11) into equation (8) and using the model             one obtains 

                 
      

      
                           

 
                                 (13) 

                 
 
   

      

      
              

 
   

      

      
                          

         
 
   

      

      
                         

 
   

      

      
                         (14) 

Using the assumption     , the remainder terms converge to zero in probability. Therefore                    

   
 

  
  and equation (14) reduces to  

                
 
   

      

      
              

 
   

      

      
                          

         
 
   

      

      
                    

 

  
                            (15) 

Our estimator for the distribution function for finite population therefore becomes 

       
 

 

 
 
 

 
 

               

 

  
 
  

 
 
 
 
 
            

      

      
      

           
      

      
                         

           
      

      
                    

 

  
 

 
 
 
 
 
 

 

  
 

   

 
 
 

 
 

  

3. Properties of the Estimator under Simple Random Sampling without 
Replacement 

3.1. Asymptotic Unbiasedness of the Proposed Estimator  

The asymptotic bias of the nonparametric estimator is defined as 

 

 
                                                        (16) 

where             is the estimated bias. 

In order to estimate       in equation (4), (Chambers et al., 1993) recommended local linear smoothing whereby   , is 

estimated by averaging only over the sample residuals with X- values that are close enough to    . 

Therefore       
                   

       
 where t is the   -quantile and     are the weights that only take non-zero values for 

sample units i with    close to    so that 

          
                 where    

  
   

       
 

Therefore equation (4) becomes 

          
 

 
                  

 
                 

As a result,  
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                                            (17) 

Next,  

               
 

 
            

                                          (18) 

Substituting the results in equation (17) and equation (18) back to equation (16) yields 

 

 
               

 

 
 
 

 
      

 

 
     

 
                    

 
 

 
               

 

         
   

         since      
 

         

3.2. Asymptotic Variance of the Proposed Estimator 

Thus          is asymptotically unbiased. 

The estimated bias is given by  

            
 

 
     

 
                   

 

                 

Therefore the variance of the estimated bias is  

                     
 

 
     

 
                   

 

                  

                 
 

            
                                                (19) 

Since the errors are assumed to be independent and identically distributed and therefore have zero covariance. 

Consider          
                        and let            

                    

Then  

         
                                                                        (20) 

With            
                    

Define                          

                       
 

      
                                                  (21) 

Suppose that         whenever     and suppose that the non-sampled units are labelled from 1 to    .  

Then 

         
                               

    
                                        

   
   

   
       (22) 

Next,  

                                                                 (23) 

Substituting equations (22) and (23) into equation (19) yields 

                 
 

  
 

        
    

                                        
   
   

   
                                 (24) 

4. Results 

In this section, simulation experiments were done to study the performance of the multiplicative bias corrected estimator.  

A population of 1, 000 auxiliary values    are generated as independent and identically distributed uniform random 

variables.  

The corresponding survey values y i are generated using the super-population model 

            with the mean functions being linear, quadratic and cosine.  

Nadaraya-Watson kernel weights are used in the smoothing of    to obtain the rough estimator, 

           
 
          , of the mean function     . A ratio    

  

       
 is evaluated and is smoothed further to obtain 

the correction factor        which is then used together with the rough estimator to obtain the multiplicative bias corrected 

estimator,        , of the mean function.  
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The existing estimators for distribution functions for finite populations that were used for comparison with our developed 

estimator          are: 

i.         
 

 
           which was suggested by Nadaraya-Watson (1968). 

ii.         
 

 
                                (Chambers & Dunstan 1986) 

iii.          
 

 
         

 

 
                

 

 
 

 

 
                         (Rao et al 1990). 

iv.         
 

 
                               (Dorfman & Hall (1993) where    is the linear estimator of the 

mean function. 

Table 1 shows the unconditional Relative Mean Error (RME) and Relative Root Mean Error (RRME) for the estimators at 

various values of the quantile   (i.e. 0.25, 0.5 and 0.75). Linear and quadratic mean functions were used to obtain the 

tabulated results. Similar results and conclusions can be obtained using other mean functions such as sine, cosine, bump etc. 

The unconditional Relative Mean Error and Relative Root Mean Error for the estimator        are calculated as: 

    
 

     
 

 

   
     

 
          

   
     and      

 

     
  

 

   
     

 
          

   
     respectively where r 

represents the level of iteration.  

Table 1.  Unconditional Relative Mean Errors and Relative Root Mean Errors 

 

Unconditional Relative Mean Error and Relative Root Mean Error 

Linear Function                    

       

Estimator RME RRME RME RRME 

         0.005485 0.008889 0.000452 0.008575 

        -1.347148 0.570421 -0.679841 0.46868 

        -3.387451 1.435164 -1.662266 1.14489 

         0.049355 0.135994 0.007001 0.082798 

        -0.024113 0.036181 0.041498 0.417668 

 
      

RME RRME RME RRME 

         0.000572 0.001902 0.000693 0.002504 

        -0.485538 0.481123 -0.340887 0.364297 

        -0.671669 0.667073 -0.596499 0.638570 

         -0.009321 0.052715 0.002349 0.037726 

        -0.118574 0.061423 -0.013618 0.017422 

 
       

RME RRME RME RRME 

         0.001265 0.004539 0.000385 0.001642 

        -0.42853 0.565463 0.35509 0.476310 

        -0.339878 0.449670 -0.337274 0.452659 

         0.005271 0.045202 0.001099 0.033943 

        -0.016679 0.028441 -0.010832 0.025169 

         can be seen to be a very efficient estimator of the empirical distribution function at all levels of the    quantile 

followed closely by          and                 proved to be a very inefficient estimator at all levels of  .  

Further, graphical comparison of estimators was done which further affirmed the results tabulated above. Figures 1 & 2 

gives a plot of all the estimators listed above.  
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Figure 1.  Plot of various Distribution functions using a linear function 

 

Figure 2.  Plot of various Distribution functions using a quadratic function 

     overestimates the empirical distribution function at 

all points while       and          give an almost perfect 

estimation of the empirical distribution function.On the other 

hand      underestimates the true function at some points 

towards the lower tail while it overestimates the same 

function at other points along the upper tail.  

The conditional performance of the estimator was done 

and was compared with the performance of the estimator.To 

do this, 200 random samples, all of size 400, were selected 

and the mean of the auxiliary values    was computed for 

each sample to obtain 200 values of   .  

These sample means were then sorted in ascending order 

and further grouped into clusters of size 20 such that a total 

of 10 goups was realized. Further, group means of the means 

of auxiliary variables was calculated to get   . 

Empirical means and biases were then computed for all 

the estimators          and     (t). 

The conditional biases were plotted against    to provide 

a good understanding of the pattern generated. Figures 3 & 4 

show the behavior of the conditional biases realized by all 

the estimators of distribution functions. 
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Figure 3.  Absolute conditional biases for the estimators using a linear mean function 

 

Figure 4.  Absolute conditional biases for the estimators using a quadratic mean function 

         and          performed equally better than all 

other estimators of the true distribution function and it can be 

seen that sample balancing does not affect the performance 

of the estimators. 

5. Conclusions 

In conclusion, using the results from Table 1 and the 

Figures 3 & 4          was found to be an efficient 

estimator of the distribution function for finite population. 

     was found to be very inefficient of all the estimators 

with large conditional bias compared to the other estimators. 

         can therefore be used in estimating distribution 

functions for various units in the population in various 

sectors of the economy. 
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