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Abstract — The transition from the “early-modern” mathematical and scientific norms of 

establishing conventional Euclidean geometric proofs has experienced quite mixed modes of 
reasoning. For instance, a careful investigation based on the continued attempts by different 
practitioners to resolve the geometric trisectability of a plane angle suggests serious hitches with 
the established algebraic angles non-trisectability proofs. These faults found the root for the 
difficult geometric question about having straightedge and compass proofs for either the 
trisectability or the non-trisectability of angles. One of the evident gaps regarding the norms for 
establishing the Euclidean geometric proofs concerns the incompatibility between the smugly 
asserted algebraic-geometric proofs and the desired inherent Euclidean geometric proofs. We 
consider an algebraically translated proof of the geometric angle trisection scheme proposed by 
[1]. We assert and prove that there is a complete incompatibility between the geometric and the 
algebraic methods of proofs, and hence the algebraic methods should not be used as authoritative 
means of proving Euclidean geometric problems. The paper culminates by employing the 
incompatibility proofs in justifying the independence of the Euclidean geometric system. 

 
Keywords — Analytic geometry; Angle-trisection; Constructability; Euclidean geometry; 
Magnitude; Taylor-expansion. 

 

I. INTRODUCTION  

The axiomatization of the Euclidean geometric system outline the principles with plane geometric nature, 
such that any theorem or demonstration of straightedge-compass geometry may be established with the 
production of a geometric figure [1], [2]. Intuitively, Euclid also appealed to the common insights of angles 
[3], [4] while building his idea of geometric magnitudes. In this paper, we look into the resolution of a plane 
angle as a geometric magnitude. There are principal components of the plane geometric quantities of 
Euclidean geometry that could go away from our belief of a plane angle. First, in geometry, only a few of 
the capabilities of plane figures are theoretically applicable. For example, Euclid introduces axioms bearing 
on angles, wherein he factors to the right angle as a unique figure; however he does not introduce the 
definitions associated with the geometries of a right angle, along with a definition of horizontal or vertical 
edges (perpendicular lines) [5]. In this sense, we will slightly assume that the plane geometric 
representations of an angle lacks sufficient Euclidean axiomatization (as it is considered in the modern 
perspective (we consider the modern perspective begins slightly from 1600𝑠)) and thus paving ways for 
other anti-straightedge and compass geometric approaches. Nonetheless, we consider in the same 
assumption that the introduction of these non-plane geometric representations of plane angles inherently 
instantiate invariance (a careful observation made in the development of geometry in the early-modern era 
(up to the time of Rene’ Descartes invention of possible geometric solutions, 1600𝑠)  [6], [7]) with the aid 
of using tools that are not theoretically applicable to formal Euclidean geometry. Second, we consider that 
a number of the principles of geometry transcend plane belief with the aid of using their very definition. 
Hence, Euclid’s axioms introduce best principles whose extension to different geometric magnitudes is 
both infinitely small and large, extending past the boundaries of our belief. For example, for Euclid, a line 
is a quantity so infinitely thin and infinitely long. These two schools of opinion play a major role in 
establishing the inherent distinction between the plane Euclidean geometric system and the non-
conventions methods of plane geometric proofs. The question of the incompatibility between geometric 
methods of proof and the algebraic methods of proof stems from the time of Rene’ Descartes [8]. One of 
critical methodological concerns for early-modern geometers is the subject of geometric exactness. 
“Exactness” often meant establishing suitable standards for determining which curves, viewed as 
instruments for problem-solving, should be admitted in geometry and which should not [9], [10]. Two 
fundamental modes were used by ancient and early-modern geometers to define geometrical objects [11]. 
One method was to describe the construction of a mathematical object, such a curve, in order to define it. 
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According to early modern custom, this method of identification was known as “description” (descriptio) 
or “specification by genesis” [12], [13]. Second, through a property that a mathematical entity, such as a 
curve, was required to have in order to be a locus, a mathematical entity could be recognized. This is known 
as “specification by property” [10], [13], [14]. The notion of geometric exactness between algebraic 
methods and Euclidean geometric norms of proof will as well, form an ingredient in establishing the aimed 
incompatibility between the two norms of proofs for geometric problems. We thus, respond to the 
incompatibility question by providing the inherent characteristics of the modes of geometric proofs made 
from the two contrasting subjects. We hope to write off this discussion by showing that the asserted non-
conventional Euclidean geometric methods of proofs imposed to Euclidean geometry lack the rigorous 
inherent geometric sophistication, to be employed as authoritative methods for establishing geometric 
proofs. We then conclusively show that algebraic methods of proof cannot qualify to be geometric methods 
of proof [15]. 

 

II. ALGEBRAIC ANALYSIS OF THE “AG-ALGORITHM” SOLUTION 

This analysis is motivated by discussions between the named authors (they retain skepticism about the 
validity of the established non-geometric angles non-trisectability proofs) two mathematics professors 
(their names and institutions not to be mentioned here) who weakly hold the opposite view that the 
established non-geometric algebraic proofs are valid to establish Euclidean geometric statements. We name 
the operations in this section as “geometric analysis” as they do not involve the description of inherent 
geometric constructions, but rather, the section concerns the analysis of a provided Euclidean geometric 
scheme based on non-geometric methods. The “AG-Algorithm” concerns a scheme for resolving plane 
angles, and so is the trisectability of an arbitrary angle. The analysis is based on the hypothesized 
assumption that there is a point of convergence upon which the trisection error of chord 𝐽𝐵''' corresponds to 
the trisection error of the curve 𝐽𝐵( such that ∠𝑃𝐴𝑄 = ∠𝐽𝐴𝐵

3/  (without elegantly defining the equality 
here), implying 𝑃𝑄'''' = 𝐵𝑅'''' = 𝑅𝑆'''' = 𝑆𝐽2  and 𝑃𝑄( = 𝐵𝑅( = 𝑅𝑆( = 𝑆𝐽3 , since the point 𝑆 is the resulting “angle 
trisection point” [15]. The aim here is to expose the limitations of using the constructability of a specific 
angle as a reasonable method of establishing a plane geometric generic impossibility statement. The 
subsequent workflow concerns investigating the assumption that ∠𝑃𝐴𝑄 = 𝜃

3/ , where 𝜃 = ∠𝐽𝐴𝐵. 
Although this is quite a weak assumption considering the realm of the plane angles, provable conclusion is 
made regarding the primary goal of the paper. We consider Fig. 1 obtained following the “AG-Algorithm” 
of an arbitrary angle ∠𝐽𝐴𝐵 constructed in a unit circle with; 𝐴 = (0,0), 𝐵 = (1,0), and, 𝐽 = (𝐶𝑜𝑠𝜃, 𝑆𝑖𝑛𝜃). 
Let the points 𝑂 and 𝑁 trisect the chord 𝐽𝐵''' such that |𝐵𝑂| = |𝑂𝑁| = |𝑁𝐽|, as established in [15]. According 
to the “AG-Algorithm” algorithm, 𝐷! = @−1 2/ , 0C. From Fig. 1, we let 𝑃 and 𝑄 be points on the unit circle 
defined by the following equations: 
𝑃 = 	𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑙𝑖𝑛𝑒	𝐷′𝑁'''''	𝑎𝑛𝑑	𝑡ℎ𝑒	𝑎𝑟𝑐 𝐽𝐵'''. 
𝑄 = 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑙𝑖𝑛𝑒 𝑂𝐴'''' 𝑎𝑛𝑑	𝑡ℎ𝑒	𝑎𝑟𝑐 𝐽𝐵'''.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. “AG-Algorithm” Analysis Scheme. 
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We begging the investigation with the trisection of chord 𝐽𝐵''', which aids us in determining the points 𝑂 
and 𝑁 on the chord 𝐽𝐵'''. We then use points 𝑂 and 𝑁 to construct points 𝑃 and 𝑄. We assume some period 
𝑡 from the center of the unit circle and set the chord; 

 
 𝐽𝐵''' = (1,0) + 𝑡(𝐶𝑜𝑠𝜃 − 1, 𝑆𝑖𝑛𝜃);    for 0 ≤ 𝑡      (1)   
  
From equation (1), when 𝑡 = 0 we obtain 𝐵 = (1,0), and when 𝑡 = 1 we get 𝐽 = 	 (𝐶𝑜𝑠𝜃, 𝑆𝑖𝑛𝜃).  
We preserve the points 𝐵 and 𝐽 of the unit circle for later use. 
 
Further, assuming that chord 𝐽𝐵''' is exactly trisected, we now set 𝑡 = 2

3/  and solve for point 𝑁 as: 
 
𝑁 = (1,0) + 2 3/ (𝐶𝑜𝑠𝜃 − 1, 𝑆𝑖𝑛𝜃) = @1 + 2 3/ 𝐶𝑜𝑠𝜃 − 2 3/ , 2 3/ 𝑆𝑖𝑛𝜃C = 	 @1 3/ +

2
3/ 𝐶𝑜𝑠𝜃, 2 3/ 𝑆𝑖𝑛𝜃C. 
                                                                                                    
Hence, 𝑁 =	 @1 3/ + 2 3/ 𝐶𝑜𝑠𝜃, 2 3/ 𝑆𝑖𝑛𝜃C       (2) 

 
Again from equation (1), we put 𝑡 = 1

3/  and solve for point 𝑂 as follows: 
  
𝑂 = (1,0) + 1 3/ (𝐶𝑜𝑠𝜃 − 1, 𝑆𝑖𝑛𝜃) = @1 + 1 3/ 𝐶𝑜𝑠𝜃 − 1 3/ , 1 3/ 𝑆𝑖𝑛𝜃C = 	 @2 3/ +

1
3/ 𝐶𝑜𝑠𝜃, 1 3/ 𝑆𝑖𝑛𝜃C. 
                        
So, 𝑂 =	@2 3/ + 1 3/ 𝐶𝑜𝑠" , 1 3/ 𝑆𝑖𝑛𝜃C       (3) 
 
This proof assumes that since 𝐷!𝑁''''' and 𝑂𝐴'''' are parallel as established by [15] and that since points 𝑂 and 

𝑁 were obtained using similar circles, chord 𝐽𝐵''' is exactly trisected. Though this assumption is practically 
shown to be an incorrect hypothesis through analysis, (appendices (1) and (2 (b)) in [15]) this paper 
preserves the hypothesis with the focus to examining the trisection of angles on anti-Euclidean methods.  

Case 1: “AG-Algorithm” Solution Error Analysis 
Now to compute the angle trisection errors, we have to determine the points 𝑃 and 𝑄 on the circumference 

of a unit circle. We proceed using points 𝑂 and 𝑁 in writing the line equations 𝐷!𝑁''''' and 𝑂𝐴'''' as follows: 
 

Line 𝐷!𝑁''''' → 𝑦 − 0 = T
@2 3/ 𝑆𝑖𝑛𝜃 − 0C

@1 3/ + 2 3/ 𝐶𝑜𝑠𝜃 + 1 2/ C
U V@𝑥 + 1 2/ C   (4) 

                         
Equation (4) further implies that 𝑦 = 𝑎@𝑥 + 1 2/ C      (5) 
 

Line 𝑂𝐴'''' → 𝑦 − 0 = T
@1 3/ 𝑆𝑖𝑛𝜃 − 0C

@1 3/ + 2 3/ 𝐶𝑜𝑠𝜃 + 1 2/ C
U V (𝑥)    (6) 

 
Equation (6) further implies that 𝑦 = 𝑏(𝑥)       (7) 
 
To find the coordinates of the points 𝑃 and 𝑄 we determine the points of intersections between lines 𝐷!𝑁''''' 

and 𝑂𝐴'''' with the unit circle defined as: 𝑥# + 𝑦# = 1.       (8)   
                                             
Using the equation for 𝐷!𝑁''''' in (8) we get;  
 
𝑥# + 𝑎@𝑥 + 1 2/ C = 1         (9) 
  
Simplifying (9) we obtain equations (10) and (11) as follows. 
 
𝑥# + 𝑎#@𝑥# + 𝑥 + 1 4/ C = 1                                                                                            

(1 + 𝑎#)𝑥# + 𝑎#𝑥 + 𝑎
#
4/ − 1 = 0                                                                                 

𝑥 =
$%!&'%"$((*&%!),%! (- $*.

#(*&%!)
=

$%!&'%"$(,%! (- &%" (- $*$%!.

#(*&%!)
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𝑥 = /0%"&($%!

#(*&%!)
         (10) 

 

𝑦 = 𝑎 Z/0%
"&($%!

#(*&%!)
+ (*&%!)

#(*&%!)
[ = 𝑎 Z/0%

"&(&*
#(*&%!)

[        (11) 

 
Consequently, equations (10) and (11) give us the point 𝑃, according to equation (12) 
 

𝑃 = T
/0%!&($%!

#(*&%!)
, Z/0%

"&(&*
#(*&%!)

[V         (12) 

 
Now we find the point of intersection between the line 𝑂𝐴'''' and the unit circle circumference as follows: 
 
𝑥# + (𝑏𝑥)# = 1 = (1 + 𝑏#)𝑥# = 1 = 𝑥 =	1

√1 + 𝑏#/       (13) 

 
From equation (13) we make:                                                                                         
 
𝑦 = 𝑏(𝑥) = 𝑏

√1 + 𝑏#/          (14) 

 
So that the point 𝑄 becomes:  
 

𝑄 = Z1
√1 + 𝑏#/ , 𝑏

√1 + 𝑏#/ [, which lies on the unit circle.     (15) 

 
We set up the point 𝐽 on the unit circle as shown in equation (16). 
 
𝐽 = 	 (𝐶𝑜𝑠𝜃, 𝑆𝑖𝑛𝜃) = ]*$1

!

*&1!
, #1
*&1!

^        (16) 
 
So that arbitrarily, we obtain Pythagorean triangles of the form in equation (17).  
 

𝑡 = 𝑎
𝑏/ ⇒ T

*$,#$.
!

*&,#$.
! ,

!%#$&

*&,#$.
!V ⇒ TZ1 − ]%

2
^
#
[
#
+ 2]%

2
^
#
= Z1 + ]%

2
^
#
[
#
V    (17) 

 
After some investigations for different 𝑡 values, we randomly set 𝑡 = *

*3*
 to operate within the confines 

of the “AG-Algorithm”. 

It follows from equation (17) that: T
*$ '

'('!

*&1!
,
!% '
'('&

*& '
'('!

V = ] *3*$*
*3*!&*

, #(*3*)
*3*!&*

^ = ]0#456
0#45#

, #(*3*)
0#45#

^ =

]*5036
*503*

, *3*
*503*

^          (18)  
So that we obtain the Pythagorean equivalence; 181# + 16380# = 16381# in which both 181, 16, 381 

are prime numbers. This completely brings in the notion of the rational number theorem in the computation.  
Observe    𝐶𝑜𝑠𝜃 = ')*(+

')*(' ⇒ 	𝜃 = 	0.633096°, thus 𝐶𝑜𝑠𝜃 < 0.75°. 
 
We now investigate for 𝑎 and 𝑏, as follows; 
 

𝑎 = 	𝑠𝑙𝑜𝑝𝑒	𝑜𝑓 𝐷′𝑁''''' = (7
7&(8

=
( !,
'-,!

7&('.,
!

'-,!
=

(,
/'-,!0

1/'-,!0-"/'.,!0
'-,!

= 31
9&1!

     (19) 

 

𝑏 = 	𝑠𝑙𝑜𝑝𝑒	𝑜𝑓 𝐴0'''' = 	 7
#&8

=
!,

'-,!

#&'.,
!

'-,!
=

!,
/'-,!0

!/'-,!0-'.,!

'-,!

= !,
*-,!

      (20) 

 
Now we have to determine the point 𝑃 which is the point of intersection of the line D′N	'''''' with the unit 

circle. Using the previous formula for 𝑃 in terms of 𝑎  
 

𝑃 = Z/0%
!&($%!

#(*&%!)
, %/0%

!&(&%
#(*&%!)

[  
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we obtain; 
 

𝑃 = j
'0, (,

2-,!
.
!
&($, (,

2-,!
.
!

#:*&, (,
2-,!

.
!
;

,
(,

2-,!
'0, (,

2-,!
.
!
&(& (,

2-,!

#:*&, (,
2-,!

.
!
;

k  

 

𝑃 =

⎝

⎜
⎛
2-,!
2-,!

		
4*((,)!-"/2-,!0

!

2-,!
$	 ((,)

!

/2-,!0
!

#
%/2-,!0

!
-((,)!&

/2-,!0
!

,
(,

2-,!
		
4*((,)!-"/2-,!0

2-,!
&(,/2-,

!0

/2-,!0
!

#/2-,
!0
!
-((,)!

/2-,!0
! 	

⎠

⎟
⎞
=

T
9&1!	4'2!,!-"/('-,"-'(,!0$	5(1!

#(3*&1"&*31!&5(1!)
,
(,	4"/"(,!-('-,"-'(,!		0-!×",/2-,!0

#(3*&1"&*31!&5(1!)	
V  

 

𝑃 = Z9&1
!	8('-)),!-,"$	0#1!

3*&3#1!&1"
, (,		

8('-)),!-,"-",/2-,!0

3*&3#1!&1"	
[       (21) 

 
Let’s now determine 𝑄 as the intersection of A0'''' with the unit circle. We consider; 
 

𝑄 = Z *
/*&2!

, 2
/*&2!

[ Where; 𝑏 = #1
0&1!

  

 
By inserting 𝑏 into: 
 

𝑄 = j *

'*&, !,
*-,!

.
! ,

!,
*-,!

'*&, !,
*-,!

.
!k = s 0&1!

/(0&1!)!&(#1)!
,

!,
*-,!

4/*-,!0
!
-(!,)!

*-,!

t = Z 0&1!

/9&51!&1"(1!
, #1
82-),!-,"",!

[   

 

𝑄 = Z 0&1!

/9&*61!&1"
, #1
82-'+,!-,"

[         (23) 

 
From Fig. 1, we apply the dot product in determining the angle between 𝐴𝑄'''' and 𝐴𝑃'''' as follows: 
 
𝑢 ∙ 𝑣 = x𝑢x ∙ x𝑣x ∙ Cos	(𝑢, 𝑣)         (24) 
 
Since 𝑃 and 𝑄 are on the unit circle we get: 
 
𝐶𝑜𝑠	(∠𝑃𝐴𝑄) = 𝐴𝑃|||||⃗ ∙ 𝐴𝑄|||||⃗         (25) 
 
To determine the dot product, we consider the trigonometric functions (cosine and sine) for an angle of 

some magnitude at some accuracy and the variables 𝑎 and 𝑏 as follows. 
 

𝐶𝑜𝑠(∠𝑃𝐴𝑄) = 𝐴𝑃|||||⃗ ∙ 𝐴𝑄|||||⃗ = ~Z9&1
!	8('-)),!-,"$	0#1!

3*&3#1!&1"
[ . Z 0&1!

/9&*61!&1"
[� +

~Z(,		
8('-)),!-,"-",/2-,!0

3*&3#1!&1"	
[ . ] #1

82-'+,!-,"
^�         (26) 

 
At least both expressions have the same denominator and are expressed as 𝑡#. 
 

𝐶𝑜𝑠	(∠𝑃𝐴𝑄) = 𝐴𝑃|||||⃗ ∙ 𝐴𝑄|||||⃗ = 	8('-)),!-,"=>9&1!?&>0&1!?&*51!@$	=0#1!>0&1!?$(1>9&1!?.#1@
3*&3#1!&1"	.		82-'+,!-,"

                       
 

𝐶𝑜𝑠	(∠𝑃𝐴𝑄) = 𝐴𝑃|||||⃗ ∙ 𝐴𝑄|||||⃗ = 	8('-)),!-,"=#4&*#1!&1"*51!@$	=951!&0#1"$4#1!$31"@
3*&3#1!&1"	.		82-'+,!-,"

  
 

𝐶𝑜𝑠	(∠𝑃𝐴𝑄) = 𝐴𝑃|||||⃗ ∙ 𝐴𝑄|||||⃗ = 	8('-)),!-,"=#4&#31!&1"@$	=#(1!&#(1"@
3*&3#1!&1"	.		82-'+,!-,"

      (27) 
 
We seek to simplify equation (27) using factorization method. 
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 𝑡( + 82𝑡# + 27 = 0 ⇒ 𝑡# = $#3±/#3!$(.#4
#

= $#3±#5
#

= �
− 7(

#

− #
#

� = �−27−1 �  

 𝑡( + 82𝑡# + 81 = 0 ⇒ 𝑡# = $3#±/3#!$(.3*
#

= $3#±36
#

= �
− *5#

#

− #
#

� = �−81−1 � 

 

 𝐶𝑜𝑠	(∠𝑃𝐴𝑄) = 	 	
8('-)),!-,">1!&#4?>1!&*?$#(1!>1!&*?	

(3*&1!)(1!&*)82-'+,!-,"
   

 

   𝐶𝑜𝑠	(∠𝑃𝐴𝑄) = 	8('-)),!-,">1!&#4?$#(1!

(3*&1!)82-'+,!-,"
   

 
So that 81 + 66𝑡# + 𝑡( and  9 + 10𝑡# + 𝑡( is reducible. 

A. Establishing the Non-Trisectability of ∠JAB 
The goal of the subsequent computations is to illustrate that the ∠𝐽𝐴𝐵 is not exactly trisected. Consider 

claim (1). 
 
𝐶𝑙𝑎𝑖𝑚	1: It is impossible to trisect ∠𝐽𝐴𝐵. 
 
Proof: To show that ∠𝐽𝐴𝐵 cannot be trisected we consider 𝑡 = *

*3*
.	 

Then: 𝐶𝑜𝑠	(∠𝑃𝐴𝑄) = 	8('('(')"-))('(')!-'>#4(*3*)!&*?$#((*3*)!

(3*(*3*!)&*)	82('(')!-'+('(')!-'
 

 
= 	√()2*(+21+!((33(7(3)$(435#5()

(#5705(#)	√2)12(;1;++
  

 
Next, we perform prime factorization so that; 
 
	8!!×'2!×*;×')!;!+'×	!!;!×"*'1$#*×0×*3*!

#×*0#53#*×	8!!×1!1(2;×')*('
= 	√*;×')!;!+'×!×'2×4!×(7*0$#×0×*3*!

*0#53#*×7×	√1(2;')*('
  

 
= 	√)+')!"*;×("+*,!+).'2)11)

550(*67×	√2)12(;1;
= √E×F$G

H√I
  

 
To determine the trisecting accuracy, we apply the cosine triple angle formula as follows. 
𝑅𝐻𝑆 = 	4	(𝐶𝑜𝑠(∠𝑃𝐴𝑄)0) − 3(𝐶𝑜𝑠(∠𝑃𝐴𝑄)) = √E×J$K

ϒ×√I
      (28) 

 
Where:  
α = [4am# + 12n# − 3R#b] × m  
 
β = [12am# + 4n# − 3R#b] × n  
 
Since 𝑅#𝑏 is an odd number and 4am# + 12n# − 3R#b and 12am# + 4n# − 3R#b are even, we note 

that α	and	β are non-zero integers. Hence: 
 
L
M
= 𝑅𝐻𝑆 means L

M
=	 √E×J$K

ϒ×√I
	⇔ pϒ√b = αq√a − β	 ⇒ p#q#𝑎 + β# − 2αβq√a  

 

√a = L!M!%&K!$L!ϒ!2
#JKM

          (29) 
 
The expression on the left-hand side is irrational, while the fraction on the right-hand side is rational. 

Hence the solution leads to a contradiction. So, therefore, the 𝑅𝐻𝑆 cannot equal 𝐿𝐻𝑆 =
*$, '

'('.
!

*&, '
'('.

!. Hence, 

the trisection investigation for ∠𝐽𝐴𝐵 fails. 
By contradiction, equation (29) shows that the trisection of a particular angle is not possible via 

straightedge and compass operations. Without scrupulous reasons, this specific view is extended to the 
generic algebraic way of proving the non-trisectability of angels. 
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B. Case 2: Further Analysis (An investigation to the AG-Algorithm Accuracy) 
This section of proof proceeds from 𝑐𝑎𝑠𝑒	1. According to algebra, the angle trisection impossibility is 

conceived when we encounter a single case of an angle that cannot be trisected. Thus, how to determine if 
all angles cannot be trisected becomes pure analysis (and even more, there is no single algebraic method 
on the angles non-trisectability that works for all plane angles). For instance, let us consider the “AG-
Algorithm” for all angles less than 1°. To do that we return to the expression for cos(∠𝑃𝐴𝑄) and set 𝑡# =
𝑥. Then: 

𝐶𝑜𝑠	(∠𝑃𝐴𝑄) = /3*&55N&N!(#4&N)$#(N
(3*&N)/9&*6N&N!

       (30) 

 
Expanding the right-hand side as a Taylor series with 𝑥 around 𝑥 = 0 we get 
 
𝐶𝑜𝑠(∠𝑃𝐴𝑄) = 1 − #N

9
+ 03

#(0
(𝑥#) − 90

4#9
𝑥0 + 4#76

796(9
𝑥(…      (31) 

 
Applying this expansion in solving the formula for 𝑅𝐻𝑆 we get: 
 
𝑅𝐻𝑆 = (4 × cos(∠𝑃𝐴𝑄))0 − 3 × cos(∠𝑃𝐴𝑄)           
 
𝑅𝐻𝑆 = 1 − 2𝑥 + 2𝑥# − *7##

4#9
𝑥0 + (0(5#

*9530
𝑥(…        (32) 

 
On the other hand, the correct expression of 𝐿𝐻𝑆 is; 
 
𝐿𝐻𝑆	 = 	 *$1

!

*&1!
= *$N

*&N
= *&N$#N

*&N
= 1 − 2𝑥(1 − 𝑥 + 𝑥# − 𝑥0 + 𝑥(…)  

 
𝐿𝐻𝑆 = 1 − 2𝑥 + 2𝑥# − 2𝑥0 + 2𝑥(…)        (33) 
 
So the error in the trisection algorithm for angles becomes; 
 
𝐿𝐻𝑆 − 𝑅𝐻𝑆 = 55

4#9
. 𝑥0 − (695

*9530
𝑥( = 55

4#9
. 𝑡5 − (695

*9530
𝑡3  

 

𝐿𝐻𝑆 − 𝑅𝐻𝑆 = 55
4#9

] OPG(")
*&QRO(")

^
5
− (695

*9530
] OPG(")
*&QRO(")

^
3
       (34) 

 
From equation (34) we extract the 𝑡 value as shown in equation (35). 
 
 *$1

!

*&1!
= 𝑐𝑜𝑠(𝜃) ⇔ 1 − 𝑡# = 𝑐𝑜𝑠(𝜃) + (𝑐𝑜𝑠(𝜃) × 𝑡#) ⇔ 1 − 𝑐𝑜𝑠(𝜃) = 	 (𝑐𝑜𝑠(𝜃) × 𝑡#) 

 
 ⇔ *$8ST(")

*&8ST(")
= 𝑡# 

 

 ⇔ 𝑡 = �*$8ST(")
*&8ST(")

= �
>*$8ST(")?>*&8ST(")?

>*&8ST(")?
! =	/*$QRO

!(")
*&8ST(")

= TUV(")
>*&8ST(")?

     (35) 

 
Equation (35) show that as the value for 𝜃 decreases from 1° to 𝜃 > 0° the corresponding angle trisection 

error decreases (appendix 2 (a) [15]). We suppose that if such an error never gets to zero, then the provided 
angle trisection geometric scheme is generally incorrect. Further, by investigations using a MATLAB code 
constructed by (appendix 2 (b) [15]), it was shown that as the angle size decreases, the line trisection error 
is always greater than the “AG-Algorithm” angle trisection error. 
 

III. CHARACTERIZING THE DISTINCTION BETWEEN THE EUCLIDEAN GEOMETRIC PROOFS IN CONTRAST TO 
THE NON-EUCLIDEAN GEOMETRIC PROOFS 

This section aims at revealing the inherent characteristic differences between the Euclidean geometric 
proofs (interchangeably applied as the conventional proofs) and the mechanical proofs (those involving 
non-Euclidean geometric proofs) employed in establishing straightedge and compass solutions. 
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A. Characterizing the Mechanical (Algebraic) Methods of Proof for Geometric Problems 
We focus on 𝑐𝑎𝑠𝑒	1 and 𝑐𝑎𝑠𝑒	2 established in the previous section. Starting with 𝑐𝑎𝑠𝑒	1, we examine 

the algebraic nature of the conclusion made following equation 29. Geometrically, equation 29 is falsely 
constructed to examine a Euclidean construction that does not have the properties the equation exhibits. 
The 𝐿𝐻𝑆 of the equation says that if one constructs the square root of a quantity employing only straightedge 
and compass operations, the square root does not geometrically equate to any other construction that is not 
a square root operation (the 𝑅𝐻𝑆 of the equation). From a Euclidean position, the constructability of a 
geometric magnitude is not restricted to other scripted conditions (as is the case with algebraic means of 
establishing solutions) besides the use of the required geometric tools. This unique feature of the Euclidean 
geometric system makes the algebraic solutions (of the form equation 29) false Euclidean geometric 
solutions. Inherently, the pathway employed to equation 29 is meant to result in comparing two distinct 
quantities, and then a contradiction conclusion is constructed. On the opposite, in the Elements, Euclid does 
not establish such a condition that any constructible geometric quantity should be expressible as a fraction 
of two integers. We think that within the confines of the plane geometric system, it is by a natural 
coincidence that the notion of rationality (when considered from the early-modern perspectives) will exist 
and not inherently from the Euclidean geometric structure. Thus, this form of relaxed (conditional free) 
Euclidean geometric solutions makes equation 29 a false geometric solution. Considering that in terms of 
Euclidean geometry the term “irrational” is applied as “incommensurate” and “rational” as 
“commensurate”, we assert that equation 29 does not qualify as a Euclidean measure for constructability. 
Euclid employed comprehensively two ways for examining the constructability of magnitudes; considering 
the ratios of the similar kind magnitudes, and as well, the ratios of the squares on the constructed magnitudes 
of similar kinds. One solid application for this Euclid’s notion is in the examination of the diagonal of a 
square. Coining from the Euclidean language one states that, the diagonal of a square is both rational and 
irrational. Equation 29 does not have that Euclidean notion of testing for the constructability of a geometric 
magnitude. Further, looking at the general implication of equation 29, one can reasonably rule out that the 
equation fails as it represents the examination of a particular angle. We say from the Euclidean perspective 
that the only common property between plane angles is that they are magnitudes bound between two rays, 
at a vertex. This makes the resolution of angles one of the most difficult exercises in geometry. However, 
neither does algebra offer alternatively equivalent means of making angles to have a common property. The 
notion of translating an angle to a straight line segment as suggested through the exposed mathematical 
formulations fails to meet the desired geometric rigor for examining quantities of a similar kind. 
Geometrically, there is no straightedge-compass construction for a line segment of magnitude “zero” such 
that the ratio cos(𝜃) = @0 𝑛/ C (with 𝑛 as a constructed line segment) exists. The ratio cos(𝜃) = @0 𝑛/ C is 
geometrically invalid thus invalidating the falsely constructed geometric statement, using algebra. 
Considering 𝑐𝑎𝑠𝑒	2, equation 35 does not provide a reasonably equivalent geometric proof that the 
constructed angle is not exactly as desired. Indeed, equation 35 is completely analytic and its genetic 
features completely violate the rigor governing Euclidean geometric proofs. In the case of exactness, a 
careful examination of equation 35 reveals that in all sense, the equation imply analytical approximations 
as valid geometric measure for geometric exactness. This is consequentially, fatal geometric misconception. 
The notion of exactness in Euclidean geometric solutions defy the use of any sorts of approximations [10]. 
Thus, equations 29 and 35 fall off the Euclidean geometric tests, invalidating the complete use of algebraic 
operations as authoritative geometric solutions. 

B. Characterizing the Euclidean Geometric Proofs 
The characteristic Euclidean geometric methods of proof are provided by [10], [15]. The sort of tests 

required for Euclidean geometric solutions does not involve comparing magnitudes of a distinct kind as 
suggested from equation 29. Inherently, Euclidean geometry involves the formalization of geometry by 
axioms that directly speak about the fundamental concepts of geometry such as points and lines instead of 
about a backdrop for such object as non-Euclidean solutions suggest. Thus the approaches established 
through 𝑐𝑎𝑠𝑒	1 and 𝑐𝑎𝑠𝑒	2 do not qualify as genetic Euclidean geometric solutions. However, analytically, 
it is shown [15] that interfacing Euclidean geometry with algebra is reasonable enough, provided that 
methodic consistency is exhibited throughout the unification practice. Unfortunately, this unification cannot 
complete without breaking the inherent governing characteristic rules from either of the subjects divide. 
We consider the characteristic Euclidean geometric proof established by one of the authors of this paper, 
in [15] ([15], (Fig. 13 and equation 67)). Considerably, (the Fig. 13, in [15]) has offered a general scheme 
showing that any plane angle can be trisected. If we reject the truth formalized in this scheme, then there 
will be multiple Euclidean geometric reasons for rejecting any impossibility proof imposed to geometry 
using algebraic methods. For instance, there is no such opposite generic proof from algebra showing that 
angles cannot be generally trisected or constructed via straightedge-compass operations. To clarify this, the 
misconception people have had is that if we exhibit a single case that shows an angle has not been exactly 
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trisected, then the problem becomes unsolvable. This notion exhibits serious faults with the use of algebra 
as a substitute for Euclidean geometric solutions in that, it does not offer the desired solutions but rather, 
provides weak distinctive methodic approaches for showing that specific distinct angles cannot be trisected. 
If we contrast the angles non-trisectability proofs with the proof for the statement of a distinct problem (say 
the cube duplication problem), we notice that even from the algebraic viewpoint, the cube duplication 
impossibility proof is generic in the sense that all cubes have completely similar geometric characteristic, 
thus making a specific proof, validly generic. That is not the case with the algebraic proofs for angles non-
trisectability. This problem has been addressed by [15]. Thus, as mentioned in section (𝐴), algebraic proofs 
do not qualify as genetic Euclidean geometric proofs for the multiple established reasons.  

 

IV. DISCUSSION 

Throughout section (𝐼𝐼𝐼), a comprehensive discussion is provided to show that the characteristic 
inconsistencies between the Euclidean geometric proof and the non-Euclidean proofs completely separate 
the two norms of establishing geometric solutions. Thus, in this paper, we have elaborated (equation 29 
offers the basic algebraic non-trisectability interpretation) on the critique established by [15] showing that 
algebra lacks the proper axiomatization to establish Euclidean geometric proof. This paper also contributes 
to answering the ancient question about the proper methods acceptable for establishing Euclidean geometric 
proof. Rene’ Descartes [8] attempted to work out this question with the use of analytic methods, although 
he carefully avoided using genetic algebraic approaches for plane geometric problems. We, therefore, 
conclude that based on the established geometric-algebraic methodic inconsistencies through section (𝐼𝐼𝐼), 
the subject of Euclidean geometry is independent enough to be supplemented and supervened with falsely 
weak algebraic proofs. The lack of a generic algebraic method that shows the non-trisectability of angles 
exposes the limitations of the non-Euclidean geometric approaches used in establishing plane geometric 
problems. The genetic nature of Euclidean geometry makes it rich with methods for reducing complex 
problems (as exposed by [15]) to simpler solvable problems. This paper also offers a turning point to 
exploring the reasons for different methods showing the non-constructability of specific angles, all 
summing up to a similar impossibility conclusion, while there is no other such inconsistent proofs in the 
scientific and mathematics enterprises, as it is the case for angles resolutions. 

 

V. CONCLUSION 

Throughout the workflow, attempts have been made to flesh out the inconsistencies between the 
Euclidean geometric systems and the non-Euclidean geometric system. These inconsistencies suggest the 
complete incompatibility between the two subjects, thus invalidating the use of algebraic strings as 
Euclidean geometric proofs. Thus, this paper opens up an opportunity for examining the root problems with 
the algebraically established geometric proofs, starting with the P.L Wantzel’s proof for the angles non-
trisectability of 1837. Further, the hope is that scholars will always, look carefully at the gaps in the 
understanding of the Euclidean geometric system between the minds of up to 171W century, and the sort of 
Euclidean geometric understanding to the 21T1 century. This paper asserts that Euclidean geometry has 
been seriously violated in translating straightedge-compass geometric problems to algebraic (analytic) 
problems without having a reasonable consideration to what the rigor to follow, for an algebraic statement 
to be geometrically acceptable. 
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