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Definition of Survey Sampling.

This area of Statistics is concerned with select-

ing subsets of the units (samples), observing

features of the sample units, then using those

observations to make inferences about entire

populations.

Sampling Theory is distinguished from the rest

of Statistics by its focus on the actual popula-

tion of which the sample is a part.

In other areas of Statistics, observations are

typically represented as realizations of random

variables, and the inferences refer not to any

actual population of units, but to the proba-

bility law that governs the random variables.
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Problem of Survey Sampling

Suppose that the number of units N in the

finite population is known and that with each

unit, is associated a number yi.

The general problem is to choose some of the

units as a sample, observe the y′s for the sam-

ple units and then use those observations to

estimate the value of some function, say,

h(y1, y2, y3, . . . , yN)

of all the y′s in the population. The function

h(y1, y2, y3, . . . , yN)

can be a simple combination of the y′s like their

total or their mean or may even be something

more complex like a quantile.
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To perform a prediction, we use the popularly

known Prediction Approach to Survey Sam-

pling by treating the numbers

y1, y2, y3, . . . , yN

as realizations of random variables

Y1, Y2, Y3, . . . , YN

After the sample has been observed, estimat-

ing h(y1, y2, y3, . . . , yN) is about predicting a

function of the unobserved Y ′s.

Usually, the relationships among the random

variables are expressed in a model for their

joint probability distribution, and predictions

are made with reference to this model.

For example, a sample of parts coming off an

assembly line could be tested to determine how

many meet engineering specifications.
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A Statistician might then represent the results

probabilistically, with each part having the same

unknown probability θ of being defective, and

seek to estimate θ or test whether it is less

than some acceptable level.

The problem becomes one of sampling if at-

tention shifts from the probability θ to the ac-

tual proportion of detectives in a day’s produc-

tion. An interested reader may see Anthony

[1], Bashtannyk and Hyndman [3], Beaumont

and Bocci [4] amongst others.



Background of Sampling Theory

Survey Sampling as an area of Statistics has

been mainly theoretical and only started to ap-

pear in the 1940s.

Detailed research started with the work of Ar-

mitage [2] and thereafter, research in Survey

Sampling Theory has been grouped into the re-

search areas of Randomisation (Design Based

Inference), Model Based Inference, Survey De-

sign, Variance Estimation, General Theory, An-

alytical Inference, Estimating Distribution Func-

tions, Handling Problems of Missing Data and

Measurement of Errors.
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Finite Population Framework

In this, the idea has been to assume that there

exists a population frame, say U , consisting of

N identifiable units, and a sample, say s, of n

identifiable units is then defined as a subset of

this U according to a rule

(1) p(s) =

{
1

NCn

, for all samples of sizen.

See Chao [6] and Castledine [5].

Generally, to use a design other than simple

random sampling, one requires auxiliary infor-

mation, say;

Xi, i = 1,2,3, . . . , N

for every unit in U .

Problems of this nature embraces stratification

and clustering of units, techniques analogous

to to blocking and nesting in experimental de-

signs.
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Going into further detail, it is worth mention-

ing that there could be, in addition to design

variables, other auxiliary variables usually re-

ferred to as covariates, measured only on the

sample units but for which population totals

are known.

Remark.

Such covariates are usually employed to im-

prove the efficiency of estimation.
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Approaches to Sample Survey Inference

1. Randomisation Inference

The framework of this inference is the dis-

tribution of the results of all the possible

samples that could have been drawn us-

ing the random sampling scheme defined

in equation 1.

This distribution depends on the popula-

tion matrix of the values of the survey vari-

able which in general, is unknown.

Control over the selection of units raises

the question of whether or not some sam-

pling schemes are better than others.

For instance, Neyman (1934), laid down

the foundations of randomisation inference

and and addressed the issue of efficiency by

considering optimal allocation for stratifi-

cation problems.
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In this case, it was assumed that the auxil-

iary information available was sufficient to

group the elements into strata, and that

the units within the strata were were ho-

mogeneous to the extent of allowing for

simple random sampling within the strata.

The main results of Armitage [2] were that

despite the analysis of variance partition

of the total sum of squares into within

and between components, the introduction

of finite-population corrections means that

for some populations: VSRS is smaller than

VPROP and can even be smaller than VOPT .

However, the general situation is that if the

stratum sizes, say Nh are large, then

VSRS > VPROP > VOPT .



2. Model Based Inference

Model Based Inference is due to Royall (1970).

He argued that models can be used to make

descriptive inferences on finite populations.

To do this, the population total, T , is writ-

ten as

(2) T =
∑

s
yi +

∑

sc

yi

The idea is to use models to predict the

unobserved values yi, i /∈ s which is repre-

sented by the second part in equation 2,

i.e.
∑

sc yi.

It has been shown that Model Based in-

ferences can be much more efficient than

the p − based inferences. The argument

for conditioning inference on the sample la-

bels challenges the very basis of randomisa-

tion inference. For further readings on the

works of Royall, see Royall and Eberhardt

[9] and Royall and Cumberland [8].



3. Model Assisted Inference

To reconcile the p−based and Model Based

approaches, a generalised regression esti-

mator

(3)

T̂GREG =
∑

s
yj/πj + (

∑

u
xj −

∑

s
xj/πj)β̂

T

where β̂T represents a row vector of esti-

mated regression coefficients.

If one writes

(4) esj = yj − xjβ̂
T

then the estimator defined in equation 3

can be written as

(5) T̂GREG =
∑

U

xjβ̂
T +

∑

s
esj/πj.

Equation 5 is now a regression predictor

plus and estimator of the total for the re-

gression residuals. The estimator in equa-

tion 5 has been proved to have good prop-

erties in both the model based and p−based



approaches. This particular estimator can

also be calibrated on the covariates.

In fact, presently, there is a choice between

two classes of of variance for measuring the

precision of estimation, the Randomisation

Variance and the Model Based Variance.

4. Design Assisted/Randomisation Assisted



Sampling Theory to date

Sample Surveys are generated by several dif-

ferent processes. The finite population values

may be generated by a model, which is always

unknown, the sample is selected by some sam-

pling mechanism, which in general is as defined

in equation 1, which may be known, partially

known or unknown.

The respondents are generated by another sam-

pling process which is unknown and the mea-

surements may be subject to measurement er-

rors, also of unknown form.

The problem for the Statistician is usually to

model this entire process and to make infer-

ences that take into account all the sources of

uncertainty, including those of the selection of

models. Most significant results have been in

the areas of Design of the variable probability,

that is πps sampling schemes.
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In the related problem of variance estimation,

Quenouille’s Jackknife has been quite influen-

tial.

Designs for balanced repeated replications vari-

ance estimators have also featured strongly and

have linked work in surveys to related work in

experimental design.

A similar link has been created in the area of

optimal survey design. Model Based inference

when employed as an alternative to the Ran-

domisation approach to sampling, has and still

places sample surveys inference within main-

stream statistical inference.

The implications however, of the use of models

for both design and analysis have challenged

the basis of Randomisation Theory.



Purposive Designs have generally not seen a lot
of success. The desire for procedures to be ro-
bust against model misspecifications supports
the case for random designs and nonparamet-
ric estimators, and in this area, even empirical
likelihood methods have emerged. In Analytic
Inference from complex survey data, the key
issue has been the role of selection, and hence
of sample design.

It has been established that analyses based on
simple random sampling assumptions, which
ignore population structure such as clusters
strata which are reflected in sample design, will
usually be wrong.

Variances will be incorrect and tests and con-
fidence intervals will be invalid.

Stratification on the dependent variable, as in
response selective sampling, will almost always
lead to estimation bias as well as to incorrect
variances.



On missing values and their estimation, sur-

veys are subject to nonresponse and this is an

additional uncontrolled selection mechanism which

is unlikely to be ignorable.

Imputation offers a possible solution. The con-

ditions under which selection mechanisms of

all types can be ignored for different forms of

inference have also been clarified.

Techniques for estimation of distribution func-

tions have also been advanced.

The work that has so far been done on analytic

inference from complex data has placed sample

survey theory within the area of mainstream

statistical analysis, and this integration is likely

to continue into the future.

Surveyors will adopt model based procedures,

such as those now being employed for estima-

tion for small areas of sub populations, while
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mainstream statisticians will take into account

selection mechanisms when analysing observa-

tional studies.

Random designs will remain the preferred de-

signs for most surveyors but conventional ran-

domisation inference will be restricted to the

estimation of finite population parameters from

large-scale descriptive surveys. Notably, not

much has been done regarding sampling in bi-

ological and environmental sciences.

The theory of capture-recapture methods is an

exception, but this is not really a sample sur-

vey problem since the sampling cannot be con-

trolled.

Particularly, Karl Pearson’s aim of making the

evolutionist a registrar-general for all forms of

life, has not been achieved.



Current Debate Regarding Inference in Sur-

vey Sampling

If there exists choices for inference, that is pre-

diction theory, probability sampling or even a

hybrid of the two, a sample surveyor may have

to make a decision on which one to use.

There is no doubt of the mathematical validity

of either of the two approaches.

The Prediction Model has in most instances

been referred to as a working model to em-

phasize that it is tentatively appropriate to be

used.

Control and knowledge of probability sampling

is complete (at least in principle) and therefore

it is easy to see the appeal of basing inferences

on it independent of prediction models.
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The inevitable fallibility of our models has been

an important theme of the theory of prediction

based sampling.

There are however, a lot of fundamental issues

underlying the background of the model based

versus design based controversy.

For review articles that compare the theories,

see Hansen et al. [7], Royall and Cumberland

[8], Smith [10], Smith [11], and Smith [12].

A basic idea governing a great deal of statisti-

cal inference if the Conditionality Principle, in

which we condition on observed random vari-

ables whose probability distribution is known

and thus, not dependent on parameters about

which we must make inferences.



The unconditional variance estimator is prob-

abilistically correct but inferentially wrong.

It is inferentially wrong as a tool for helping to

interpret and communicate the uncertainty in

our estimate of the population mean.

The conditionality principle says that inference

should be made conditionally on the observed

sample, and not averaged over all samples that

might have been selected, as the probability

sampling approach does.

The Randomisation Principle says that random

sampling is the sine quo non of finite popula-

tion inference.

If we choose to reject that principle, then the

begging question is why we use random sam-

pling.
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As is expected, there are several arguments

for the use of randomisation, some are correct

whereas some are not.

One extreme is that Artificial Randomisation

provides the only basis for rigorous probabilistic

inference and that in the absence of randomi-

sation, valid probabilistic inferences are impos-

sible.

However, it has been shown that the proba-

bility distribution determined by artificial ran-

domisation is not appropriate even when it is

available.

Therefore, to claim that, in general, proba-

bilistic inferences are not valid when the ran-

domisation distribution is not available is sim-

ply wrong.
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RESEARCH PROSPECTS

Estimation in the presence of outliers

For a particular target population, let a work-

ing model hold for most of the population but

a small percentage of units be contaminated

by following a model whose mean or variance

is far removed from that of the core model.

Such units are known as outliers.

Variance estimation for the outlier resistant es-

timators of totals is an open area for research.

Some researchers have done some work, for

instance Lee (1991) discussed the method-of-

moments types of estimators of the asymp-

totic variance and gave some limited empirical

results.

Resampling has also been used as a possible

way of addressing outliers.
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For example, Chambers and Kokic (1993) used

a version of bootstrap to calculate the confi-

dence intervals in two populations, using the

bisqure Ψ-function and three different Huber

functions based on different values of the tun-

ing constant.

Confidence intervals based on biased estima-

tors have however been proved to to be cen-

tered in the wrong spot and will not, typically,

have nominal coverage probabilities.

Even though the outlier robust alternatives may

sometimes have good mean square error per-

formance, there remains the problem of how

to adequately correct for the bias when con-

structing confidence intervals.

Outliers will also affect the more general re-

gression estimators. Substantial amount of

research has been done in this area in other



branches of statistics but direct links to finite

population sampling has not been established.

Nonlinear Models

Today, surveys are mainly used to estimate rare

characteristics, like the prevalence in a popu-

lation of the number of persons who have a

particular type of disability.

Such rare characteristics are ones for which lin-

ear models and linear estimators may be espe-

cially poor.

Little has been done on how much improve-

ment can be made by using nonlinear estima-

tors or whether it is feasible to use the esti-

mators. Robust variance estimation for this

class of problems has a lot of unfinished work.

In particular, the work of Valliant (1986) has

not been concluded. More specifically, no work

has been done on testing whether balancing of



some type has a role in robustness for Bernoulli

models or other nonlinear models.

The Biotatistical literature on generalised esti-

mation equations and accompanying variance

estimators may be useful if properly applied to

finite population estimation.

See the recommendations of Liang and Zeger

(1986), Liang et al (1992), Zeger and Liang

(1986).

Nonparametric Estimation of Totals

No research appears to have been done on the

estimation of the variance of any of the non-

parametric CDF estimators or on confidence

interval constriction. How to use Multiple Ex-

planatory Variables in predicting the popula-

tion total and thus the corresponding CDF,

say, FN(t), is a largely unexplored area.



Little has also been done on quantile estima-

tion via nonparametric CDF estimators. Repli-

cation of some sort, like the bootstrap or bal-

anced repeated replication, may be a possibility

for variance estimation and confidence interval

construction, particularly since analytic deriva-

tion of variances for nonparametric CDF and

quantile estimators may be difficult.

In this area, an interested reader may find some

insight from Shao and Wu (1992), Dorfman

and Valliant (1993), Rao and Shao (1993).

These works need to be extended to quantiles

derived from parametric and nonparametric re-

gression methods.

Small Area Estimation

A lot of literature in small area estimation ex-

ist, but use of such literature in finite popula-

tion estimation has not been explored.



The unease in using concepts of small area

estimation are mainly due to misuse of mod-

els. There is a lot of urge to guard inference

against model failure by use of either model ro-

bust methods such as balanced sampling, or by

careful and adequate model verification in the

sampling context. Very little has been done in

this area.

Verification is a very important aspect in small

area estimation. An important component of

this is cross-validation on small domains for

which data outside of the domain and com-

paring predicted results on the domain with

actual sample values.

The degree and type of cross-validation will de-

pend on the amount and sort of data available

within the domain.



In the case where a domain totally lacks data,

one needs to investigate the validity of a pri-

ori justifications for applying the model, even

when it is well verified on available data.

Such justifications need to be published along

with any estimates. Much work needs to be

done for developing a generally accepted canon

of model verification and sound variance esti-

mation for small area estimation.
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