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Abstract 

In this study, a multiplicative semiparametric fourth order bias 
reduction density is proposed. The proposed density accommodates all 
parametric distributions and produces optimum results even in 
situations where the underlying parametric distributions are not the 
best approximations to the correct density of the data. This offers an 
impressive option for estimating statistics with large sample properties 
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such as complex indixes. It consists of parametric estimate multiplied 
by a nonparametric correction function. The simulation results show 
its practical potential. 

1. Introduction 

Density estimation has become an important area of study in recent 
times. This is due to the fact that most statistical estimation approaches use 
nonparametric estimation, which generally requires enhanced smoothing to 
improve efficiency and precision of estimates. This calls for consideration of 
extension of basic kernel density estimators to complicated estimation 
methods. For instance, variable kernel density estimation (Abramson [1]; 
Jones [5]), biased reduction density estimation (Hjort and Glad [3]; Jones et 
al. [6]; Scott [8]; Silverman [10]). All these employed different strategies to 
bias reduction. Whilst Abramson [1] employed larger bandwidths in low 
density regions with low bandwidths in high density regions, Hjort and Glad 
[3]; Jones et al. [6]; Scott [8]; Silverman [10] considered a high degree 
smoothed function which increased the number of observations used in the 
estimation procedure, thereby increasing precision and reducing bias. 
Another important aspect of density estimation is the use of nonparametric 
and semi-parametric transformation estimation procedures (Abramson [1]; 
Hjort and Glad [3]; Jones et al. [6]; Ruppert and Cline [7]). This paper 

extends the work by Hjort and Glad [3] from ( )2nO  to ( ).4nO  This is 

particularly useful in estimating large sample statistics such as complex 
indixes. 

2. Proposed Density Estimator 

In this study, a multiplicative semi-parametric biased reduction density 
estimator is proposed. The approach is to start with a parametric density 
estimate and multiply by a nonparametric kernel estimate. The general form 
of the density is 

( ) ( ) ( )xrxfxf ˆˆ,ˆ θ=  
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where the nonparametric correction function is 

( ) ( )
( )∑

= θ
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nxr
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The sXi′  are independent observations from an unknown population 

density. The parametric estimation used in this estimation process does not 
have to be necessarily the correct underlying distribution, even when the 
parametric form is crude, the method works considerably well. Note that the 
usual kernel density estimator is given by 

( ) ( )∑
=

−=
n

i
ihk xXKnxf

1

1ˆ  (3) 

with ( ) ( )zhKhzKh
11 −−=  and ( )zK  being the kernel function. In this 

paper, the kernel function is assumed to be a symmetric probability density 

with finite variance, ( )∫=σ dzzKzk
22  and roughness ( ) ( )∫= .2 dzzKKR  

The mean and variance are 

( ) ( ) ( )xfhxfxfE kk ′′σ+= 22
2
1ˆ &  (4) 

and 

( ) ( ) ( ) ( ) .ˆ
2

n
xf

nh
xfKRxfVar k −=&  (5) 

For details and current state of research in this area, see (Cameron and 
Trivedi [2]; Hjort and Glad [3]). 

3. Nonparametric Correction with a Fixed Start 

Given ,0f  a fixed density, presumably a guess estimate of f. Let 
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.0rff =  (6) 

The intent is to estimate the nonparametric correction factor r using kernel 
smoothing. A possible representation is 

( ) ( ) ( )xrxfxf ˆˆ,ˆ θ=  

( ) ( )
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= θ
θ
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n

i i
ih Xf

xfxXKn
1

ˆ,

ˆ,1  (7) 

with 

( ) ( )
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i i

ih
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xXK
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1
.ˆ,

1ˆ  (8) 

Using a fixed density, ( )xf0  such as the uniform distribution gives the 

ordinary kernel estimator, with the mean 

( ) ( ) ( )∫ += dzhzxrzKxrE ˆ  

( ) ( ) ( ) ( )xrhxrhxrhxr ′′′μ+′′μ+′μ+= 3
3

2
2

1 !3
1

2
1  

( )( ) ( )4
4

4
!4

1 hOxrh iv +μ+  (9) 

( ) ( ) ( )( ) ( )4
4

4
24
1ˆ hOxrhxrxrE iv +μ+=⇒  (10) 

and bias 

( )( ) ( ) ( )xrxrxrbias −= ˆˆ  (11) 

( )( ) ( ).24
1 4

4
4 hOxrh iv +μ=  (12) 

 (13) 

It has the variance 
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with ( ) ( )∫
∞

∞−
= dzzKKR 2  as the roughness of the kernel. 

The proposed estimator has an expectation of 

( ( )) ( ) ( )∫
∞

∞−
+= dzhzxfzKxfE ˆ  (17) 
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and bias 
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since ( ) ( ) ( ).00 xrxfrfxf ==  

The variance of the proposed estimator is 

( )( ) ( ) ( ) ( ) .var
2

n
xfxfnh
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From the foregoing, it is clear that, the variance of the proposed estimator is 
of the same size to that of the traditional kernel estimator according to the 
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approximation order used and same bias similar to the same order ( )4hO  but 

directly proportional to ( )ivrf0  instead of ( ).ivf  Since mostly ,10 ≤f  it 

affords a smaller bias than ordinary kernel estimation in most cases. In cases 

where 0f  is a good guess, r is expected to near constant and ( )ivr  very 

small, describing some neighborhood of densities around ,0f  where the 

proposed method is better than the traditional kernel. 

3.1. Nonparametric correction on a parametric start 

Given a parametric family of densities having a multidimensional 

parameter ( )′θθ=θ p...,,1  belonging to a given open and connected region 

in p-space. Suppose ( )θ̂,xf  is the parametric start and ,θ̂  a maximum 

likelihood estimator. Let ( )θ̂,xf  be an estimated normal density. The 
description of data summary given is not intended to obtain the true 
underlying density; the proposed method works well in cases where f cannot 
be well approximated by any given ( )., θ⋅f  The critical issue is to obtain the 

right correction function ( ) ( )θ,xfxf  using kernel smoothing. Thus, 

( ) ( )
( )

( )
.ˆ,

1ˆ,ˆ 1
θ

−
θ=
∑ =

i

n
i ih

Xf

xXK

nxfxf  (23) 

The maximum likelihood estimator seeks ,0θ  the minimum false value by 
the Kullback-Leibler distance measure 

( ) ( ) ( ){ }∫ θ dxxfxfxf i ,log  (24) 

from the true density, f to an approximant ( )., θ⋅f  If ( ) ( )00 , θ= xfxf  for 

the given best parametric approximant, and ( ),ˆ,log 00 θ
θ∂
∂= xfu  the score 

function evaluated at this parameter value. Using Taylor series expansion, 

( )
( )

{ ( ) ( )}θ−θ=
θ
θ ˆ,logˆ,logexpˆ,

ˆ,
i

i
Xfxf

Xf
xf  (25) 
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which implies 

( ) ( ) ( )
( ) [ ( ) ( ){ } ( )]∑ θ−θ′−−−= ˆ11ˆ

00
0
0 xuXuXf
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i

ih&  (27) 

( ) ( ).xVxf n+= ∗  (28) 

Thus, ( )xf ∗  is the same as the original proposed estimator, except that 0f  

function here is not unique and the ( )xVn  represents the parametric 

estimation variance. 

Expressing 0
ˆ θ−θ  as an average of iid zero mean variables and the 

remainder terms gives the approximate bias and variance of ( ).ˆ xf  

For regular estimators that has an influence with finite covariance matrix, 
suppose F is the true distribution, the cumulative function of f, and ,nF  the 

empirical distribution function. The functional estimators for θ  in the form 

of ( )nFT=θ̂  with influence function 

( ) ( )( ) ( ){ } .1lim 0 ε−εδ+ε−= →ε FTFTxI x  

Where xδ  represents unit point mass at x, and a finite covariance, 

( ) ( )∑ ′= .iif XIXIE  The best approximating function ( ) ( )00 , θ= xfxf  to 

( )xf  that ( )θ̂,xf  seeks is given by ( ).0 FT=θ  

According to Huber [4] and Shao [9], 

( )∑
=

ε++=θ−θ
n

i
ni n

dXIn
1

1ˆ  (29) 

with ( )1−=ε nI  with mean ( ),2−nO  thus nd  is the bias of .θ̂  The 

estimator can be de-bias using resampling methods (jackkniffing or 
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bootstrapping) to remove the nd  term. Using the maximum likelihood 

approach, 

( ) ( )xuJxI 0
1−=  (30) 

with ( ) .,log 0
2 θ′∂θ∂θ∂−= if XfEJ  

Proposition 3.2 (Bias and Variance of the Proposed Density Estimator). 
Let ( ) ( )00 , θ= xfxf  and ( ),0 FT=θ  the parametric approximant to f, and 

.0ffr =  The proposed semiparametric estimator has 
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Proof of Expectation of the Proposed Estimator. The proof relies on 
the fourth order Taylor expansion of 
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The general form of this expansion is 

( ) ( ) ( ) ( )xfzhxfhzxfxf ′′+′+= 22
2
1ˆ  
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9
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Thus, expanding the above (33) in the light of the general form gives 
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1
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( ) ., ∗∗′= GGXxp i  (52) 

Now, with the expected value of the proposed estimator, recall that ∗f  has 

mean ( ) ( ) ( )( ) ( ).24
1 4

0
4

4 hOxrxfhxf iv +μ+  Using (29) and the averages 

representation, 
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( ) ( ) ( ),21 −− +′= nOIEIECTnxEW iiirn  (54) 
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since ( )ii XII =  has mean 0. Clearly, the fourth order Taylor series 

approximation used involving ( )5,0
ˆ

ii θ−θ  terms, is of size ( ).2−nOp  Hence 

the bias of ( )xf̂  is 
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for certain ( )xb  function. 

Proof of Variance of the Proposed Estimator. The variance of ( )xf ∗  

is 
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Using (29) and the iid representation, 
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For ( )xWn  can be seen to have uninfluential variance ( ).24 nhO  The same 

holds for ( )xM n  and ( )xNn  respectively. Finally, 

{ ( ) ( )} ( ) ( )21, −−∗ +′= nOIEAEBnxVxfCov iiin  (62) 

( ).2 nhO=  (63) 

The combination of all these gives the necessary variance expression. 

Clearly from the foregoing, the result is tractable with its simplicity; with 
the bias and variance being affected by only the parametric estimation noise 

by quite small ( )22 −+ nnhO  order. This is because θ̂  is close to 0θ  and 

( )xf̂  estimator uses only sXi′  close to x, granting ( )iXu0  close to ( ).0 xu  It 

is however, not the case considering only the correction function ( ).ˆ xr  

Consistency of the proposed density estimator is guaranteed by both 0→h  
(forcing bias towards 0) and ∞→nh  (making variance go to 0). 
Additionally, if the parametric model is accurate, r function is equal to 1 and 

the bias is only ( ).24 nhhO +  

3.3. Normal start estimate 

The normal start estimator takes the form ( ( )),ˆˆˆ 11 μ−σφσ −− x  obtainable 

via maximum likelihood estimates ∑ =
−=μ n

i iXn 1
1ˆ  and =σ2ˆ  

( )∑ =
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21 ,  the debias form uses 1−n  in the denominator. Thus, 

the density estimator is given by 
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3.4. Mean-square error 

An important concept commonly and conveniently used to measure 
estimation precision is the mean-square error. 

( ( )) ( ( ) ( ))2ˆˆ xfxfExfMSE −=  (66) 

( ( )) ( ( ))xfxfBias ˆvarˆ 2 +=  (67) 
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It is called asymptotic mean-square-error since the approximation uses 
asymptotic expansions. It is a function of the sample size n, the bandwidth h, 

the kernel function through ( 4μ  and ( )),KR  and changes with x as ( )( )xf iv  

and ( )xf  changes. 

Also, the squared bias is increasing in h while the variance is decreasing 

in nh. Thus, for ( ( ))xfMSE ˆ  decreases as ,∞→n  both bias and variance 

must become small. Hence, as 0, →∞→ hn  and .∞→nh  Thus, the 

bandwidth must decrease at a smaller rate than the sample size. This is 
sufficient to establish the pointwise consistency of the estimator. Hence 

( ) ( )xpfxfx →∀ ˆ,  as .∞→n  

3.5. Asymptotically optimum bandwidth 

This refers to the value of h that minimizes the Asymptotically Mean 
Integrated Square Error (AMISE). This bandwidth, h is obtained by taking 
the derivative of the AMISE with respect to h and set it to 0. Thus 

( )( ) ( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

μ
= n

xf
nh

KRxfhxfdh
dAMISEdh

d iv
2

8
2

4

24
 (71) 



A Semi-Parametric Multiplicative Bias Reduction Density with … 13 
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The optimal bandwidth has order ( ).9
1−

nO  For higher order kernels, the 
convergence rate is slower implying that larger bandwidths than that used for 
second order kernels are permissible. This is due to the fact that higher order 
kernels have smaller bias, hence can allow larger bandwidths. By substituting 

0h  into (69), the variance and bias terms yields an order of ( ).9
8−

nO  It is 
worth noting that this convergence rate is fast approaching the parametric 
rate of convergence and hence the better the density estimator. 

4. Simulation Results 

Simulation studies performed on the proposed estimator revealed that the 
estimator has an asymptotic mean square error of 0.9999542 which is almost 
unity. This makes it more tractable for use in practical applications. The 
challenge of its use maybe based on the bandwidth estimation owing to the 
fact that, numerical approximations are used in estimating the optimum 
bandwidth with its attendant approximation errors. This problem can be 
addressed by using a possible best search where the analytical solution seems 
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unsatisfactory since a maximum deviation of between 10–15% of the 
optimum bandwidth often produce satisfactory results (Jones et al. [6]; Scott 
[8]). The comparative performance of the proposed estimator against its 
ordinary kernel counterpart showed that the estimator is superior using the 
first five Marron-Wand densities. The results are tabulated below. 

MISE values for Proposed estimator, pf̂  and Kernel functions 

Marron-Wand Density 
pf̂  Kernel 

Gaussian 58.18089 68.47813 

Skewed 112.5738 129.0788 

Strongly Skewed 420.6225 450.8423 

Kurtotic 558.4034 589.873 

Outlier 6320.694 6459.58 

From the plots above, it can be seen that the optimum bandwidth of the 
estimator is around .30 when the data driven default is actually 0.2338 
underscoring its ability to admit higher bandwidths hence increasing 
precision of estimation. 

 

Figure 1. Comparative plots for the proposed density and its competitors and 
bandwidths (a) 1.0=h  (b) .2.0=h  
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Figure 2. Comparative plots for the proposed density and its competitors and 
bandwidths 3.0=h  and 4.0=h  respectively. 
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