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Abstract

In this study, an assessment of precision of poverty indicators is made
with a view to improving its performance. A multiplicative bias reduction
density function is used in estimating the poverty indicators and compared
to the uniform, normal, and the nearest neighbor density estimators. Simu-
lation results shows the practical potential of the multiplicative density esti-
mator over its usual competitors especially when the sample size is large.
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1 Introduction
Research efforts are recently being directed at improving the estimates of statis-
tics based on the linearization techniques, which are seemingly preferred to the
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resampling methods because it is less labour intensive and time consuming (Chau-
vet and Goga, 2018; Goga et al., 2009) without sacrificing the gain in precision.
Previously, linearization techniques were implemented especially for poverty and
inequality indicators using the normal kernel density, this was shown to gener-
ate strong bias (Graf and Tillé, 2014; Karlis, 2016). Graf and Tillé (2014) then
proposed using the uniform and the k-nearest neighbor with logarithmic transfor-
mation to mitigate the bias. The reduction of the bias was still substantial after
their methods were implemented. In this study, a fourth-order semiparametric
density estimator is proposed, which significantly reduces the bias. This density
estimator, reduces both bias and variance, or at worst preserves the variance of the
ordinary kernel estimator and therefore makes it suitable for practical applications
such as estimating poverty indicators.

2 Review of poverty indicators and their correspond-
ing linearized variables

Suppose U is a population of size N distinct units u1, ...uN . For convenience, let
uk be represented by the index k. Let U be a population that has acceptable cov-
erage of a target population. For every unit k, there is a corresponding measure
yk based on the characteristic of interest in the population. Because most survey
data often contain tied observations due to rounding or range answers, making
it difficult to sort into distinct objects for effective for effective estimation of the
density function, Graf and Tillé (2014) increased these values randomly by small
and negligible values uniformly to enable the data to be sorted. For a compre-
hensible review of these methods and applications, see (Demnati and Rao, 2004;
Deville, 1999; Graf and Tillé, 2014; Osier, 2009). Graf and Tillé (2014) gave the
practical implementation of these methods. As poverty indicators are non-linear
statistics, indeed they are rank statistics and therefore cannot be differentiated to
the second order, the plausible approach to obtaining their linearized statistics is
via generalized linearization (Deville, 1999; Graf and Tillé, 2014; Osier, 2009).
Other methods to obtaining its variance are the resampling methods such as the
Jackknife and the boostrap. The generalized linearization technique uses the idea
of influence function initially developed in the field of robust statistics by Hampel
(1974). The definitions of these poverty indicators considered in this study are
simply stated below. Readers interested in details are referred to Graf and Tillé
(2014).
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3 Poverty Indicators

3.1 Quantile
According to the fourth definition of Hyndman and Fan (1996), the quantile is
defined as

Qα = yk−1 +(yk− yk−1) [αN− (k−1)] (1)

where αN < k ≤ αN +1. The sample estimate of the quantile is

Q̂α = yk−1 +(yk− yk−1)

(
αN̂− N̂k−1

wk

)
(2)

The linearized variable of an α-order quantile is given by

ẑQα

k =− 1
f
(
Q̂α

) 1
N̂

[
1[yk≤Q̂α]−α

]
(3)

(Graf and Tillé, 2014).
The quantile estimates (2) and (3) will be used in estimating the poverty indi-

cators which are discussed below.

3.2 Median income and at-risk-of-poverty threshold
Suppose m̂ = Q̂0.5 is the estimated median income of the sample. The At Risk of
Poverty Threshold (ARPT ) is defined as 60% of the median income:

ARPT = 0.6F−1 (0.5) (4)

estimated by
ÂRPT = 0.6Q̂0.5 = 0.6m̂

This is an absolute measure that is scale-dependent. The linearized variable of the
ARPT is proportional to that of the median income given by

ẑARPT
k = I (ARPT )k = 0.6I (MED)k =−

0.6
f (m̂)

1
N̂

[
1[yk≤m̂]−0.5

]
(5)

(Graf and Tillé, 2014).
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3.3 At Risk of Poverty Rate
The At Risk of Poverty Rate (ARPR), where ARPR ∈ [0,1] defines the share of
the population with an income below the ARPT : ARPR = F (ARPT ). It is also
scale-dependent. The sample estimate is given by

ÂRPR =
∑yk<ÂRPT wk

N̂
(6)

(Graf and Tillé, 2014).
Osier (2009) defined the linearized variable of the ARPR as

ẑARPR
k =

1
N

(
1[

yk≤ÂRPR
]− ÂRPR

)
−

f
(

ÂRPT
)

f (m̂)

0.6
N̂

(
1[yk≤m̂]−0.5

)
=

1
N̂

(
1[

yk≤ÂRPR
]− ÂRPR

)
+ f

(
ÂRPT

)
ẑARPT

k (7)

3.4 Median income of individuals below the ARPT
The median income of individuals below the ARPT is mp = F−1 (1/2F (ARPT )).
It is estimated in the same way like any other quantile but the exact definition may
differ (Graf and Tillé, 2014). Osier (2009) defined the linearized variable of mp in
terms of the ARPR as

ẑmp
k =

1
f (m̂p)

ẑARPR
k
2
− 1

N̂

(
1[yk≤mp]−F (m̂p)

)
(8)

3.5 Relative Median Poverty Gap
The relative median poverty gap (RMPG) is the relative difference between the
ARPT and the median income of individuals below the ARPT . If RMPG = 0, then
the income of all ”poor” individuals is equal to the ARPT , and RMPG = 1 if the
income of all ”poor” individuals is zero. It measures the extent to which ”poor”
individuals are poor;

RMPG =
ARPT −mp

ARPT
(9)

(Graf and Tillé, 2014; Verma and Betti, 2010). The linearized variable of the
RMPG as defined by Osier (2009) is

ẑRMPG
k =

m̂pẑARPT
k − ÂRPT ẑmp

k

ÂRPT
2 (10)

Here, the estimated income density function is involved four times: once in the
estimation of ẑARPT

k and three times in the estimation of ẑmp
k .
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4 Estimate of the income density function
Inferences on a finite population using a design-based study often rely on a design
P(S) to obtain representative sample of finite population U with size N. This way,
the random variable of interest is the sample inclusion indicators whilst the rest
are fixed. This makes the population income distribution a step function given by

Fy (x) = ∑
k∈U

1yk≤x/N (11)

which has no derivatives due to discontinuities. Suppose in supperpopulation with
a model-based study, the intent is not to justify the income density function, the
distribution function can be smoothed artificially to become differentiable. Con-
sequently, the function is not exactly a density function. Previously, researchers
have smoothed the function using Gaussian kernel to obtain estimates of the in-
come density function:

K (u) =
1

h
√

2π
e−u2/2, u =

x− yk

h

f̂1 (x) =
1
N̂ ∑

k∈S
wkK

(
x− yk

h

)
(12)

=
1

h
√

2π

1
N̂ ∑

k∈S
wkexp

[
−(x− yk)

2

2h2

]

with h as the bandwidth estimated by ĥ = σ̂N̂−0.2; σ̂ being estimate of the income

standard deviation for the empirical income distribution given by σ̂=

√
∑k∈s wky2

k
N̂

− ȳ2
w

(Deville, 1999; Graf and Tillé, 2014; Osier, 2009). It is worth noting that the
presence of influential outliers as its often the case with income data can af-
fect the estimate of the standard deviation. Therefore, Silverman (1986) rec-
ommended the h for data that has positive skewness coefficient to be estimated
by h = 0.79

(
Q̂0.75− Q̂0.25

)
N̂−0.2. Verma and Betti (2010) observed that tied

observations as commonly found in survey data may affect the density function
estimate and hence affect the precision of the linearization technique. In an at-
tempt to address this defect, Graf and Tillé (2014) made two propositions: First,
they estimated the density at point x by estimating the density using the logarithm
of x divided by its non-logarithmic value, valid for finite populations. The log-
arithm reduces the leveraging effect of the outliers present in the income data.
Their estimator thus becomes

f̂2 (x) = f̂v (ν) =
f̂v (ν)

x+a
=

f̂y (log(x+a))
x+a

(13)
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where a = (|mink (yk) |+1), a positive real number to cater for negative or zero
incomes. Details can be found in Graf and Tillé (2014). Secondly, Graf and
Tillé (2014) estimated the density by using ”nearest neighbor” with minimum
bandwidth used by Deville (1999) for density estimation given by

f̂D (x,a,b) =
1
N̂ ∑

k∈S
KD (y) (14)

=
1
N̂ ∑

k∈S
wk

1
b−a

1yk∈[a,b[ (15)

=
F̂Y (b)− F̂Y (a)

b−a
,x ∈ [a,b[ (16)

with F̂Y (x) = ∑k∈S wk1yk≤x/N̂ and h = b− a. Their method used at least p ob-
servations closer to point x based on minimum bandwidth h(p) ≥ ho pt defined
by

hopt =
0.9min

(
σ̂, Q̂0.75− Q̂0.25

)
1.34

5
√

N̂
(17)

due Silverman (1986) as rule of thumb for bandwidth determination. Conse-
quently, they obtained the final density estimator using the proposed logarithmic
approach as

f̂3 (x) =
f̂ (log(x+a))

x+a
(18)

for details on the full implementation of this procedure, the reader should consult
Graf and Tillé (2014).

4.1 Multiplicative density estimator
In this study, a multiplicative semi-parametric biased reduction density estima-
tor is proposed to effectively mitigate the challenge of bias in the estimation of
poverty indicators. The approach is to start with a parametric density estimate and
multiply by a nonparametric kernel estimate. The general form of the density is

f̂ (x) = f
(
x, θ̂
)

r̂ (x)

=
1
n

n

∑
i=1

Kh (Xi− x)
f
(
x, θ̂
)

f
(
Xi, θ̂

) (19)

where the nonparametric correction function is

r̂ (x) =
1
n

n

∑
i=1

Kh (Xi− x)
f
(
Xi, θ̂

) (20)

Details and properties of the estimator can be found in Jakperik et al. (2018,
unpublished).
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5 Assessment of Robustness
The robustness of the linearized statistic was ascertained using the generalized
Beta distribution of the second kind (GB2) in the R package pro f ml.gb2 com-
ments on its robustness to follow after simulation (Graf and Nedyalkova, 2011;
Karlis, 2016).

6 Variance estimation
Let v̂arsim

(
θ̂
)

be a Monte Carlo variance estimate of a poverty indicator, θ̂. Sup-
pose v̂arlin

(
θ̂
)

is the variance estimator based on linearization computed using the
linearized variable, ẑθ̂ for every sample:

v̂arlin
(
θ̂
)
=

N (N−n)
n

var
(

ẑθ̂
s

)
(21)

with n as the sample size for the simulations. Similarly,

var
(

ẑθ̂
s

)
=

1
n−1 ∑

k∈S

(
ẑθ̂

S,k− z̄θ̂
S

)
(22)

where z̄θ̂
s = n−1

∑s ẑθ̂

S,k. This is strictly design-based and is obtained by sub-
stituting the linearized statistic for total into the relevant formula for variance ac-
cording to the design used. In this study, the simple random sampling without
replacement was used and hence its formulae above used in the relevant compu-
tations. The achieved reduction in bias using linearization is assessed by com-
paring the expected Monte Carlo value of the variance estimated using lineariza-
tion, Esim

[
v̂arlin

(
θ̂
)]

with the ”true” Monte Carlo variance estimate, v̂arsim
(
θ̂
)
,

in terms of the relative bias:

RB
[
v̂arlin

(
θ̂
)]

=
Esim

[
v̂arlin

(
θ̂
)]
− v̂arsim

(
θ̂
)

v̂arsim
(
θ̂
) (23)

(Graf and Tillé, 2014; Mukhopadhyay, 2012).

7 Simulation results
Simulation studies were performed to compare the performance of the proposed
multiplicative density estimator to those used by Graf and Tillé (2014) in their
study. The results showed remarkable improvement in precision of the proposed
multiplicative density function in estimating the poverty indicators considered in
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the study. One clear observation worthy of notice is the apparent improvement in
precision when the sample size increased from 500 to 1000. Therefore, it stands to
reason that higher sample sizes may enhance the estimates even further. The table
below presents the relative bias for the poverty indicators based on the different
density functions.

Table 1: Evaluation of poverty indicators under different density functions

Sample size, n = 500 Sample size, n = 1000
Indicator f̂1 f̂2 f̂3 f̂p f̂1 f̂2 f̂3 f̂p

ARPT 0.06 0.04 0.12 0.03 0.05 0.02 0.09 0.01
ARPR 0.02 0.03 0.11 0.02 -0.01 0.02 0.12 0.01
RMPG 0.42 0.22 -0.13 0.09 0.40 0.20 0.10 0.04
MEDP 0.62 -0.15 0.20 0.13 0.51 -0.11 0.16 0.11
MED 0.08 0.06 0.14 0.04 0.04 -0.03 0.08 0.02

Clearly, the estimators can either overestimate or underestimate the true param-
eters under consideration, resulting in the the relative bias taking on positive or
negative values respectively depending on the nature of data used. The impressive
issue about the results is that the multiplicaative bias reduction density produces
results with relative bias consistently lower than 5% which underscores its robust-
ness.
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