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Abstract: The objective of this paper is to provide a provable solution of the ancient Greek problem of trisecting an arbitrary angle 
employing only compass and straightedge (ruler). (Pierre Laurent Wantzel, 1837) obscurely presented a proof based on ideas from 
Galois field showing that, the solution of angle trisection corresponds to solution of the cubic equation; 𝑥𝑥3 − 3𝑥𝑥 − 1 = 0, which is 
geometrically irreducible [1]. The focus of this work is to show the possibility to solve the trisection of an angle by correcting some 
flawed methods meant for general construction of angles, and exemplify why the stated trisection impossible proof is not 
geometrically valid. The revealed proof is based on a concept from the Archimedes proposition of straightedge construction [2, 3]. 
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Notations 

∠ Denotes an angle 
∩ ∀����� Denotes a straight line and a length 
2𝐷𝐷 Two Dimensional 
3𝐷𝐷 Three Dimensional 

1. Introduction

The early Greek mathematicians were unable to
solve three problems of compass-ruler (straightedge) 
construction; the ‘trisection of an angle’, ‘how to 
double the volume of a given cube’, and the problem 
of ‘squaring a circle’. Eventually the problems were 
assumed to be unsolvable under the restrictions 
imposed by the Greek mathematicians. The scope of 
this paper is restricted on the trisection of an arbitrary 
angle. The unclear proof of angle trisection 
impossibility was established, based on ideas from 
Galois field of algebra, and it stated that ‘The 
trisection of an angle corresponds to the solution of a 
certain cubic equation whose solution cannot be 
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sought under the Greek’s rules of Geometry’ [1, 2]. 
Three algebraic constraints exists which state; a length 
can only be constructible if and only if it represents a 
constructible number, an angle is constructible if and 
only if its cosine is a constructible number, and, a 
number is constructible if and only if it can be written 
in the four basic arithmetic operations and the 
extraction of the square roots but not on higher roots 
[4]. These three conditions are quite fashionable in 
Euclidean constructions, and they enabled the early 
mathematicians correctly justify the construction of all 
the angles multiples and sub multiples of 15 and the 
associated regular polygons. However, this novel 
paper presents a correct algorithm justifying that the 
stated algebraic specifications does not apply to all the 
plane geometrical problems, by drawing out some 
limitations in the presented proof of impossibility. For 
instance, some angles such as 45°, 90° and 180° 
are trisectible following the Euclidean rigor of 
construction, but there trisection methods could not be 
adopted since they do not generalize for the 
partitioning of all the angles into the desired ratio [5]. 
Moreover, it is geometrically possible to bisect a line 
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segment between two points in a plane, as well as the 
partitioning a line segment into equal fractions using 
the Greek’s tools of geometry [6, 7]. The presented 
proof of the impossibility does not show that some of 
these cases are constructible. Considering the 
trisection of and angle as a cubic equation translated 
the problem from a 2𝐷𝐷 (plane geometry) problem as 
it should be sought, to a 3𝐷𝐷  (solid geometry) 
problem, which involve equations of the form 𝑛𝑛3 as 
discussed in section 1.2 . This was a serious 
misconstruction and due to inability to geometrically 
solve the cubic equations, and the fact that no 
geometrical algorithm has been presented to solve the 
partitioning of an angle into a given ratio, 
mathematicians wicked to pseudo mathematical 
approaches which do not redress the problem with the 
desired degree of correctness [9]. This paper relies on 
a simple concept of the Archimedes theorem of 
straightedge which stated “If we are in possession of a 
straightedge that is notched in two places, then it is 
possible to trisect an arbitrary angle”, by revealing a 
geometrical solution for this ancient problem, 
contrally to the Archimedes approach of using a 
marked straightedge. An elementary proof of solving 
the posed problem of angle trisection is then exposed 
from the construction, by trisection of 48° and 60° 
angles. 

1.1 To show that any three points not lying on a 
straight line lie in the same plane 

When two rays in a plane share a common endpoint, 
an angle is produced between the two rays. An 
example is in a geometrical figure such as triangle. 
Any two sides of a triangle have a common point at 
the vertices and thus angles of some size are defined 
between the two sides of the figure. In this section, a 
brief discussion about any three points, one not 
collinear with the other two in a plane is presented. 
Consider the following theorem: 

Theorem 1: Any three points not lying in a straight 
line lie only in same plane, and every triangle lies only 

in one plane [8]. 
Considering three points; 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶, not lying in 

one straight line but all connected together by straight 
lines as shown on figure (1), it is not possible for all 
the three points to lie on different planes. To justify 
this proposition, let points 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 lie on two 
distinct planes; 𝑀𝑀 and 𝑁𝑁. Since both point 𝐴𝐴 and 𝐵𝐵 
lie on plane 𝑀𝑀, the straight line 𝐴𝐴𝐵𝐵 lie on plane 𝑀𝑀. 
Also, since points 𝐴𝐴  and 𝐵𝐵  lie on plane 𝑁𝑁 , the 
straight line 𝐴𝐴𝐵𝐵  also lie on plane 𝑁𝑁 . Therefore, 
plane 𝑀𝑀 and plane 𝑁𝑁 have line 𝐴𝐴𝐵𝐵 in common (they 
intersect along line 𝐴𝐴𝐵𝐵). Point 𝐶𝐶 does not lie in line 
with 𝐴𝐴𝐵𝐵 and therefore not common for both planes. 
Thus it is not possible for points 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 to lie in 
both planes 𝑀𝑀  and 𝑁𝑁 . Considering triangle 𝐴𝐴𝐵𝐵𝐶𝐶 , 
the whole triangle lies only in one plane. Hence, for 
any plane containing all of triangle 𝐴𝐴𝐵𝐵𝐶𝐶 must also 
contain its three vertices 𝐴𝐴, 𝐵𝐵, and C. This shows 
that the whole of any triangle lies only in one plane. 
Considering ∠𝐴𝐴𝐵𝐵𝐶𝐶 as the acute angle to be trisected, 
it is required that the points defining the trisection 
lines lie in the curve subtending ∠𝐴𝐴𝐵𝐵𝐶𝐶 at point 𝐵𝐵, 
and that point 𝐵𝐵  is defined in a two dimensional 
coordinates system. Therefore, the problem of 
trisecting an angle has to be sought following the 
classical rules of Euclidean geometry. 

1.2 The Mistake In Pierre Laurent Wantzel’s Proof Of 
Angle Trisection Impossibility (1837) 

Theorem 1 illustrates how three points defining a 
given angle, and not collinear lie in the same plane, 
and that in plane geometry two different planes cannot 
share all points in common.It is pellucid that algebra 
 

 
Fig. 1  Illustration of a plane geometry figure. 
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has well been applied in justification of plane 
geometric problems and the underlying concepts 
correctly verified. In this sense, degree two 
polynomials have been employed in defining 
constructions in a plane such as; determining the 
quadratic equations defining some angle bisection 
lines. The scope of this paper is restricted in Euclidean 
plane geometry of straightedge and compass 
construction. Plane geometric construction is 
governed by many propositions and theorems, which 
greatly influenced the development of geometry. As 
stated earlier, some few angles are geometrically 
trisectible, it is possible to bisect both an angle and a 
straight line, as well as dividing a straight line 
segment into the desired number of equal portions. It 
is also possible to construct lines of magnitude √2 
and √5 . The existence of these well justified 
constructions implies the great probability of 
trisecting a given angle, or the construction of an 
angle of a certain ratio. The third algebraic condition 
specified in section 1.0  limits plane geometric 
constructions from advancing in higher orders of roots, 
above the square roots of numbers. According to this 
article, this condition is not fashionable in restricting 
the extraction of higher order roots above square roots, 
in geometry, based on the fact that a line segment can 
be geometrically fractioned into the required ratio [8]. 
Depending on the application, it is quite difficult to 
determine the magnitudes of the sliced portions of a 
line segment, and algebraically, this implies the 
possibility of constructing numbers which do not 
represent constructible numbers, a case contradicting 
the stated algebraic condition. This section in a simple 
and brief approach discusses the angle trisection 
impossibility, to reveal how the algebraic approach 
turned the problem from plane geometry problem into 
a solid geometry problem and thus the impossibility. 
The impossibility proof was centered on concepts 
from the Galois field. Therefore, based on the ancient 
proof, the problem can be stated as: Define a 
configuration to be a finite collection 𝐶𝐶 of points, 
lines, and circles in the Euclidean plane. Define a 
construction step to be one of the operations to enlarge 
the collection 𝐶𝐶 as: Given two distinct points 𝐴𝐴 and 

𝐵𝐵 in 𝐶𝐶, join points 𝐴𝐴 and 𝐵𝐵, using a straight line 
and add 𝐴𝐴𝐵𝐵����  to 𝐶𝐶 . Given a third point 𝑂𝑂  in 𝐶𝐶 , 
construct a circle with center 𝑂𝑂 and radius 𝐴𝐴𝐵𝐵���� of 
the line segment joining 𝐴𝐴 and 𝐵𝐵, and add it to 𝐶𝐶 
using a compass. Given two different curves 𝛾𝛾 and 𝑢𝑢 
in 𝐶𝐶 (such that 𝛾𝛾 and 𝑢𝑢 are either a line or a circle 
in 𝐶𝐶), select a point 𝑇𝑇 that is common to both 𝛾𝛾 and 
𝑢𝑢 and add it to 𝐶𝐶. Therefore a point, line, or circle is 
said to be from a configuration 𝐶𝐶  if it can be 
obtained from 𝐶𝐶 after applying a finite number of 
construction steps. From these deductions, there are 
only two positions in which the point 𝑇𝑇  can be 
located. The point 𝑇𝑇  however, quadrasects angle 
𝐴𝐴𝑂𝑂𝐵𝐵 and it must be outside the initial plane defined 
by radius 𝐴𝐴𝐵𝐵����. Trisection of an angle may not be 
easily solved in such a linear construction, but a 
deeper look at the problem would obligate some 
serious exploration of the relationship between some 
chords and curves in a circular plane, as presented in 
[3]. The wantzel’s proof considered the lemma; there 
is no power of 2 that is evenly divisible by 3 which 
was employed to demonstrate the angle trisection 
impossibility using concepts from Galois field of 
numbers. A proof upon this lemma can be described 
as follows: 

Corollary: Let 𝑄𝑄  be a field, and let 𝑅𝑅  be an 
extension of 𝑄𝑄 that is constructible out of 𝑅𝑅 by a 
finite order of quadratic extensions. Then 𝑄𝑄 does not 
contain any cubic extensions 𝑉𝑉of 𝑅𝑅. 

Proof: If 𝑄𝑄 contained a cubic extension 𝑉𝑉of 𝑅𝑅, 
then the dimension of 𝑄𝑄 over 𝑅𝑅 would be a multiple 
of three. On the other hand, if 𝑄𝑄 is obtained from 𝑅𝑅 
by a tower of quadratic extensions, then the dimension 
of 𝑄𝑄 over 𝑅𝑅 is a power of two. It can therefore be 
stated, any point, line, or circle that can be constructed 
from a configuration 𝐶𝐶  is definable in a field 
obtained from the coefficients of all the objects in 𝐶𝐶 
after taking a finite number of quadratic extensions, 
whereas trisection of an angle such as ∠𝐴𝐴𝐵𝐵𝐶𝐶 will 
basically be definable in a cubic extension of the field 
generated by the coordinates of 𝐴𝐴,𝐵𝐵,𝐶𝐶 . Based on 
these coordinates, three plane angles ∠𝐴𝐴𝐵𝐵𝐶𝐶, ∠𝐵𝐵𝐴𝐴𝐶𝐶 
and ∠𝐴𝐴𝐶𝐶𝐵𝐵  can be constructed to represent three 
different planes such that; the three plane angles add 
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up to less than four right angles and any two of them 
add up to more than the third one [6, 8]. These 
conditions can be met in a solid geometric 
construction, when for example, the three plane angles 
made from isosceles triangles of equal legs meet their 
vertices at a common endpoint. In analytic Euclidean 
plane geometry, an angle is genetically defined in a 
two dimensions (𝑥𝑥, 𝑦𝑦- coordinates) with 𝑥𝑥 and 𝑦𝑦 as 
real numbers, and not in three dimensions as presented 
in the Pierre Wantzel’s cubic equation of the 
impossibility. From this discussion, it is evident that 
the presented proof of impossibility dictates rotation 
of objects to reach some accuracy as applied in 
solutions using ‘other methods’ of trisecting an angle 
[24], and these operations are prohibited in Euclidean 
plane geometry. Therefore, the impossibility proof 
that an angle cannot be divided into a certain fraction, 
or that other angles not under angles of base 60° 
cannot be constructed has no geometric precision. 
Thus the trisection of an angle is typically a plane 
geometry problem (2D), and not a 3D problem as it 
has been sought. 

2. Hypothesis 

In a typical plane geometric construction, the 
relation between two angle can be defined by ratios; 
𝑎𝑎 𝑏𝑏⁄ = 𝑥𝑥, with 𝑎𝑎 and 𝑏𝑏 as the curves subtending the 
larger angle to the smaller angle at a point respectively. 

Therefore, considering two angles, 𝛼𝛼  and 𝛽𝛽  such 
that 𝛼𝛼 𝛽𝛽 = 𝛿𝛿⁄ , then, 𝛿𝛿 ≅ 𝑥𝑥 , where 𝑎𝑎  and 𝑏𝑏 
correspond to 𝛼𝛼 and 𝛽𝛽 respectively. Thus taking the 
ratios between any two given angles; 𝛼𝛼 𝛽𝛽 = 𝛿𝛿⁄ , some 
cases would yield a ratio from which to derive the 
relation 𝑎𝑎 𝑏𝑏⁄ = 𝑥𝑥  is geometrically difficult. 
Therefore, for consistency, it is important to choose a 
constant difference between two angles, as such the 
difference between the constructible angles multiples 
of 15 is 15°, and multiple or sub multiples of 15°. 
This paper therefore considered the relation between 
any two angles at a difference of 10°, or a difference 
multiple of 10 from each other in there descending 
order. The most significant ratio was 60° 20° = 3: 1⁄ . 
This consideration is due to the fact that the 60° 
angle form the base for the construction of all the 
angles multiples of 15  [3]. The novelty of these 
ratios rose due to the need to generate a method in 
which a particular considerable distance between two 
points transform equally into two different points 
without rotation or sliding of objects to locate the new 
points. Consider figure (2). The resolution of this 
work is to geometrically ratify that the conferred 
relations exists, such that: 𝐴𝐴𝐵𝐵���� = 𝐴𝐴𝐷𝐷′����� = 𝐷𝐷′𝐸𝐸����� = 𝐴𝐴𝐶𝐶���� =
𝑟𝑟 , where 𝑟𝑟  is the radius of the circle, and that 
∠𝐵𝐵𝐴𝐴𝐷𝐷 = ∠𝐸𝐸𝐴𝐴𝐷𝐷′ = ∠𝐴𝐴𝐸𝐸𝐷𝐷′. This implies 3∠𝐵𝐵𝐴𝐴𝐷𝐷 =
∠𝐶𝐶𝐴𝐴𝐵𝐵. 

 

 
Fig. 2  Transformation of point 𝑫𝑫 to points 𝑫𝑫′ and 𝑬𝑬 geometrically. 
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3. Materials and Methods 

3.1 Materials 

The required mathematical tools in solving this 
problem include; 
 Compass 
 Ruler (straightedge) 
 Piece of a drawing paper 
 Pencil 
 Computer 
 GeoGebra Software installed in the computer. 

3.2 Methodology 

This section has improved on a construction presented 
for the classical construction of angles in general [3]. 
The present theorem begins by depicting how one can 
construct angles multiples of 2  by constructing a 
32° angle using the usual Greek’s tools of geometry, 
and then the construction of angles multiples of 5, 
and 10 or their sub multiples, by constructing an 
angle of 40° , and the methods are justified by 
trisecting angles of 48° and 60° respectively. 

3.2.1 Construction of 𝟑𝟑𝟑𝟑°  angle using a ruler 
(straightedge) and compass only. 

(1) Draw a straight line between two points 𝐴𝐴 and 𝐵𝐵. 
(2) Mark a point 𝐶𝐶 equidistant 𝐴𝐴𝐵𝐵���� from both 𝐴𝐴 

and 𝐵𝐵 and draw an arc 𝐵𝐵𝐶𝐶 centered at 𝐴𝐴. 
(3) Join the chord 𝐶𝐶𝐵𝐵����, and construct its bisection 

through a point 𝐷𝐷 to cut curve 𝐵𝐵𝐶𝐶 at 𝐸𝐸. 
(4) Construct the bisection of ∠𝐸𝐸𝐷𝐷𝐵𝐵  to cut 

curve 𝐵𝐵𝐸𝐸 at 𝐹𝐹. 
(5) Further, construct the bisection of ∠𝐸𝐸𝐷𝐷𝐹𝐹 to cut 

curve 𝐹𝐹𝐸𝐸 at 𝐺𝐺. 
(6) Position the pair compass at point 𝐸𝐸 and make 

an arc of length 𝐷𝐷𝐹𝐹���� to cut curve 𝐸𝐸𝐶𝐶 at 𝐻𝐻. 
(7) With the compass at point 𝐻𝐻, mark point 𝐼𝐼 of 

distance 𝐷𝐷𝐺𝐺���� between carve 𝐻𝐻𝐸𝐸. ∠𝐼𝐼𝐴𝐴𝐵𝐵 =  32°. 
3.2.2 Trisection of ∠𝟒𝟒𝟒𝟒°  Using Compass-ruler 

(Straightedge) Construction to Proof the Construction 
of ∠𝟑𝟑𝟑𝟑° 

Figure (4) depicts the results obtained after carrying 

out the following steps of construction using a ruler 
and compass. 

(1) Draw a straight line between two points 𝐴𝐴 and 
𝐵𝐵. 

(2) Mark a point 𝐶𝐶 equidistant 𝐴𝐴𝐵𝐵���� from both 𝐴𝐴 
and 𝐵𝐵 and draw an arc 𝐵𝐵𝐶𝐶 centered at 𝐴𝐴. 

(3) Join the chord 𝐶𝐶𝐵𝐵����, and construct its bisection 
through a point 𝐷𝐷 to cut curve 𝐵𝐵𝐶𝐶 at 𝐸𝐸. 

(4) Construct the bisection of ∠𝐸𝐸𝐷𝐷𝐵𝐵  to cut 
curve 𝐵𝐵𝐸𝐸 at 𝐹𝐹. 

(5) Further, construct the bisection of ∠𝐸𝐸𝐷𝐷𝐹𝐹 to cut 
curve 𝐹𝐹𝐸𝐸 at 𝐺𝐺. 

(6) Position the compass at point 𝐸𝐸 and make an 
arc of length 𝐷𝐷𝐹𝐹���� to cut curve 𝐸𝐸𝐶𝐶 at 𝐻𝐻. 

(7) With the compass at point 𝐻𝐻, mark point 𝐼𝐼 of 
distance 𝐷𝐷𝐺𝐺���� between carve 𝐻𝐻𝐸𝐸. 

(8) Construct the bisector of ∠𝐼𝐼𝐴𝐴𝐵𝐵 to cut curve 𝐵𝐵𝐼𝐼 
at point 𝐽𝐽. 

(9) With the compass at point 𝐼𝐼, mark an arc of 
radius 𝐵𝐵𝐽𝐽 to cut curve 𝐼𝐼𝐶𝐶 at 𝐾𝐾.∠𝐾𝐾𝐴𝐴𝐵𝐵 = 48°. 

(10) Reflect point 𝐵𝐵 about 𝐴𝐴 to produce point 𝐵𝐵’. 
(11) Again using chord 𝐵𝐵𝐽𝐽, place the compass at 

𝐵𝐵’ and mark a point 𝐽𝐽’ on the arc 𝐵𝐵’𝐶𝐶 . 𝐽𝐽’ is an 
image of point 𝐽𝐽. 

(12) Draw a straight line from point 𝐾𝐾 through 𝐽𝐽’ 
to meet the produced diameter 𝐵𝐵𝐵𝐵’ externally at a 
point 𝑀𝑀. 

3.2.3 Proof 
Consider figure (4). 
3.2.3.1 To show 𝑴𝑴𝑴𝑴′����� = 𝑨𝑨𝑴𝑴′���� = 𝑨𝑨𝑨𝑨���� 
This part of proof employs the compass equivalence 

theorem to justify that; length 𝑀𝑀𝐽𝐽’ is equal to the 
radius of the original (blue) circle, by drawing a circle 
of radius 𝑀𝑀𝐽𝐽′�����, and center 𝐽𝐽’. If 𝑀𝑀𝐽𝐽′����� = 𝐴𝐴𝐽𝐽′����, then the 
circumference of the circle with radius 𝑀𝑀𝐽𝐽′����� has to 
pass through point 𝐴𝐴 as shown in figure (5). 

Thus, the circle in blue circumference is congruent 
to the circle defined by the circumference in orange, 
implying: 𝑀𝑀𝐽𝐽′����� = 𝐴𝐴𝐽𝐽′���� = 𝐴𝐴𝐵𝐵����, circles radii. Therefore, 
this proof indicates that if a trisection is not precisely 
correct, the two circles would not be congruent. 
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Fig. 3  Construction of 𝟑𝟑𝟑𝟑° angle. 
 

 
Fig. 4  Geometrical Proof of Trisecting 𝟒𝟒𝟒𝟒° Angle. 
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Fig. 5  To Justify that 𝑴𝑴𝑴𝑴′����� = 𝑨𝑨𝑴𝑴′���� = 𝑨𝑨𝑨𝑨����. 
 

3.2.3.2 To show that ∠𝑲𝑲𝑨𝑨𝑨𝑨 = 𝟑𝟑∠𝑴𝑴𝑨𝑨𝑨𝑨 
From figure (4), 𝐴𝐴𝐵𝐵���� = 𝐵𝐵𝐶𝐶���� = 𝐶𝐶𝐴𝐴����, implying triangle 

𝐴𝐴𝐵𝐵𝐶𝐶 is equilateral. ∠𝐸𝐸𝐴𝐴𝐵𝐵 = 30°. The goal of this 
section of proof is to show that ∠𝐼𝐼𝐴𝐴𝐵𝐵 = 32° . 
Applying a concept of transformations, the point 𝐽𝐽 is 
reflected on the circumference of the circle, on the 
plane 𝐵𝐵𝐶𝐶𝐵𝐵′ to yield point 𝐽𝐽′ as shown above. 

Let ∠𝐽𝐽𝐴𝐴𝐵𝐵 = ∅. 
Triangle 𝐵𝐵′𝐴𝐴𝐽𝐽′ ≡ 𝐵𝐵𝐴𝐴𝐽𝐽 , by the property 𝑆𝑆𝐴𝐴𝑆𝑆 . It 

follows that, ∠𝐵𝐵′𝐴𝐴𝐽𝐽" = ∅. (1) 
Since: 𝑀𝑀𝐽𝐽′����� = 𝐴𝐴𝐽𝐽′���� , ∠𝐽𝐽′𝑀𝑀𝐵𝐵′ = ∠𝐵𝐵′𝐴𝐴𝐽𝐽′ = ∅  (Base 

angles of isosceles triangle 𝐴𝐴𝐽𝐽′𝑀𝑀). 
Again, ∠𝐴𝐴𝐽𝐽′𝐾𝐾 = 2∅ (Sum of two interior angles is 

equal to the size of the opposite exterior angle of the 
triangle). We also have; ∠𝐴𝐴𝐽𝐽′𝐾𝐾 = ∠𝐽𝐽′𝐾𝐾𝐴𝐴 = 2∅, (Base 
angles of isosceles triangle 𝐽𝐽′𝐴𝐴𝐾𝐾). 

From these deductions, ∠𝐽𝐽′𝐴𝐴𝐾𝐾 = 180°− 4∅. (2) 
Consider; ∠𝐵𝐵′𝐴𝐴𝐽𝐽′ + ∠𝐽𝐽′𝐴𝐴𝐾𝐾 + ∠𝐾𝐾𝐴𝐴𝐵𝐵 = 180° 

(Angles on a straight line). Making ∠𝐾𝐾𝐴𝐴𝐵𝐵  the 

subject; ∠𝐾𝐾𝐴𝐴𝐵𝐵 = 180°− (∠𝐵𝐵′𝐴𝐴𝐽𝐽′ + ∠𝐽𝐽′𝐴𝐴𝐾𝐾). (3) 
Substituting equations (1) and (2) in equation (3); 

∠𝐾𝐾𝐴𝐴𝐵𝐵 = 180°− (∅ + 180°− 4∅) 
∠𝐾𝐾𝐴𝐴𝐵𝐵 = −∅ + 4∅ = 3∅. (4) 
Thus from (4),∠𝐾𝐾𝐴𝐴𝐵𝐵 = 3∠𝐽𝐽𝐴𝐴𝐵𝐵. 
Since ∠𝐾𝐾𝐴𝐴𝐵𝐵 = 48° , ∠𝐽𝐽𝐴𝐴𝐵𝐵 = 16°  (a bisector of 

∠𝐼𝐼𝐴𝐴𝐵𝐵), implying ∠𝐼𝐼𝐴𝐴𝐵𝐵 = 32°. 
Figure (6) demonstrates the presented proof of 

trisecting ∠48° using the GeoGebra software. 

3.3 Construction of 𝟒𝟒𝟒𝟒° angle using compass and 
ruler (straightedge) only. 

Carrying out the following steps of a construction 
would help to construct an angle of 40° using only a 
compass and a ruler, as illustrated in figure (7). 

(1) Draw a straight line between two points 𝐴𝐴 and 
𝐵𝐵. 

(2) Mark a point 𝐶𝐶 equidistant 𝐴𝐴𝐵𝐵���� from both 𝐴𝐴 
and 𝐵𝐵 and draw an arc 𝐵𝐵𝐶𝐶 centered at 𝐴𝐴. 
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Fig. 6  To illustrate the Trisection of 𝟒𝟒𝟒𝟒° angle. 
 

(3) Join the chord 𝐶𝐶𝐵𝐵����, and construct its bisection 
through a point 𝐷𝐷 to cut curve 𝐵𝐵𝐶𝐶 at 𝐸𝐸. 

(4) Construct the bisection of ∠𝐸𝐸𝐷𝐷𝐵𝐵 to cut curve 
𝐵𝐵𝐸𝐸 at 𝐹𝐹. 

(5) Further, construct the bisection of ∠𝐸𝐸𝐷𝐷𝐹𝐹 to cut 
curve 𝐹𝐹𝐸𝐸 at 𝐺𝐺. 

(6) Position the pair compass at point 𝐸𝐸 and make 
an arc of length 𝐷𝐷𝐹𝐹���� to cut curve 𝐸𝐸𝐶𝐶 at 𝐻𝐻. 

(7) With the compass at point 𝐻𝐻, mark point 𝐼𝐼 of 
distance 𝐷𝐷𝐺𝐺���� between carve 𝐻𝐻𝐸𝐸. ∠𝐼𝐼𝐴𝐴𝐵𝐵 =  32. 

(8) Construct the bisection of angle 𝐼𝐼𝐴𝐴𝐵𝐵 to cut 
curve 𝐵𝐵𝐼𝐼 at 𝐽𝐽. 

(9) Bisect ∠𝐽𝐽𝐴𝐴𝐵𝐵 at 𝐾𝐾 on curve 𝐵𝐵𝐽𝐽. 
(10) Placing the compass at 𝐼𝐼, mark a point 𝐿𝐿, 

distance 𝐵𝐵𝐾𝐾���� on curve 𝐼𝐼𝐻𝐻. ∠𝐿𝐿𝐴𝐴𝐵𝐵 =  40°. 
3.3.1 Trisection of 𝟔𝟔𝟒𝟒°  angle to proof the 

construction of 𝟒𝟒𝟒𝟒° angle 
This section presents an illustrative construction of 

trisecting an angle of 60° using GeoGebra. Consider 
figure (8) generated after performing the following 
steps of construction using the geometry software: 

(1) Draw a straight line between two points 𝐴𝐴 and 𝐵𝐵. 
(2) Mark a point 𝐶𝐶 equidistant 𝐴𝐴𝐵𝐵���� from both 𝐴𝐴 

and 𝐵𝐵 and draw an arc 𝐵𝐵𝐶𝐶 centered at 𝐴𝐴. 
(3) Join the chord 𝐶𝐶𝐵𝐵����, and construct its bisection 

through a point 𝐷𝐷 to cut curve 𝐵𝐵𝐶𝐶 at 𝐸𝐸. 
(4) Construct the bisection of ∠𝐸𝐸𝐷𝐷𝐵𝐵 to cut curve 

𝐵𝐵𝐸𝐸 at 𝐹𝐹. 
(5) Further, construct the bisection of ∠𝐸𝐸𝐷𝐷𝐹𝐹 to cut 

curve 𝐹𝐹𝐸𝐸 at 𝐺𝐺. 
(6) Position the pair compass at point 𝐸𝐸 and make 

an arc of length 𝐷𝐷𝐹𝐹���� to cut curve 𝐸𝐸𝐶𝐶 at 𝐻𝐻. 
(7) With the compass at point 𝐻𝐻, mark point 𝐼𝐼 of 

distance 𝐷𝐷𝐺𝐺���� between carve 𝐻𝐻𝐸𝐸. 
(8) Construct the bisection of ∠𝐼𝐼𝐴𝐴𝐵𝐵 to cut curve 

𝐵𝐵𝐼𝐼 at 𝐽𝐽. 
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Fig. 7  Construction of 𝟒𝟒𝟒𝟒° angle. 
 

(9) Bisect ∠𝐽𝐽𝐴𝐴𝐵𝐵 at 𝐾𝐾 on curve 𝐵𝐵𝐽𝐽. 
(10) Placing the compass at 𝐼𝐼, mark a point 𝐿𝐿, 

distance 𝐵𝐵𝐾𝐾���� on curve 𝐼𝐼𝐻𝐻. 
(11) Construct the bisection of ∠𝐿𝐿𝐴𝐴𝐵𝐵 to cut curve 

𝐵𝐵𝐸𝐸 at 𝑀𝑀. 
From the algebra window, by default the software 

awards the symbols 𝛼𝛼,𝛽𝛽, 𝛾𝛾  for ∠𝐶𝐶𝐴𝐴𝐿𝐿, ∠𝐿𝐿𝐴𝐴𝑀𝑀, and 
∠𝑀𝑀𝐴𝐴𝐵𝐵  respectively. It is clearly shown that, 
∠𝐶𝐶𝐴𝐴𝐿𝐿 = 𝐿𝐿𝐴𝐴𝑀𝑀 = ∠𝑀𝑀𝐴𝐴𝐵𝐵 = 20°. 

3.3.2 A Geometrical Proof that it is Possible to 
Trisect 𝟔𝟔𝟒𝟒° Angle 

Consider the following steps of construction and the 
produced diagram; 

(1) Draw a circle with radius 𝐴𝐴𝐵𝐵����, and its dimeter 
extended outside as depicted below. 

(2) Mark a point 𝐶𝐶  on the circumference 
equidistant 𝐴𝐴𝐵𝐵���� from both 𝐴𝐴 and 𝐵𝐵. 

(3) Join the chord 𝐶𝐶𝐵𝐵, and construct its bisection at 
a point 𝐷𝐷 to cut curve 𝐵𝐵𝐶𝐶 at 𝐸𝐸. 

(4) Construct the bisection of ∠𝐸𝐸𝐷𝐷𝐵𝐵 to cut curve 
𝐵𝐵𝐸𝐸 at 𝐹𝐹. 

(5) Further, construct the bisection of ∠𝐸𝐸𝐷𝐷𝐹𝐹 to cut 
curve 𝐹𝐹𝐸𝐸 at 𝐺𝐺. 

(6) Position the pair compass at point 𝐸𝐸 and make 

an arc of radius 𝐷𝐷𝐹𝐹���� to cut curve 𝐸𝐸𝐶𝐶 at 𝐻𝐻. 
(7) With the compass at point 𝐻𝐻, mark point 𝐼𝐼 of 

distance 𝐷𝐷𝐺𝐺���� between carve 𝐻𝐻𝐸𝐸. 
(8) Construct the bisection of ∠𝐼𝐼𝐴𝐴𝐵𝐵 to cut curve 

𝐵𝐵𝐼𝐼 at 𝐽𝐽. 
(9) Bisect ∠𝐽𝐽𝐴𝐴𝐵𝐵 at 𝐾𝐾 on curve 𝐵𝐵𝐽𝐽. 
(10) Placing the compass at 𝐼𝐼, mark a point 𝐿𝐿, 

distance 𝐵𝐵𝐾𝐾���� on curve 𝐼𝐼𝐻𝐻. 
(11) Construct the bisection of ∠𝐿𝐿𝐴𝐴𝐵𝐵 to cut curve 

𝐵𝐵𝐸𝐸 at 𝑀𝑀. 
(12) Reflect point 𝐵𝐵 about point 𝐴𝐴 to get point 

𝐵𝐵’ as shown below. 
(13) With the compass at 𝐵𝐵′, mark a point 𝑀𝑀′such 

that, 𝐵𝐵′𝑀𝑀′������ = 𝐵𝐵𝑀𝑀�����. Draw a straight line from point 𝐶𝐶 
through 𝑀𝑀′  to meet the extended diameter 
𝐵𝐵𝐵𝐵’externally at a point 𝑁𝑁. 

3.3.3 Theorem 2: Based on the classical Greek’s 
rules of construction it can be deduced that: “If the 
terminal point of the curve or the chord subtending 
the “trisection angle” at the center of the circle is 
reflected on the opposite side at circumference in the 
same plane, and a line drawn from the terminal of the 
“trisected angle” through the mirrored point to 
intersect the diameter outside the circle , such that, 
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Fig. 8  Trisection of 𝟔𝟔𝟒𝟒° angle. 
 

the distances between the point of intersection and the 
reflected point is equal to the radius of the circle, then 
it is geometrically possible to trisect a given angle.”. 

A proof elaborating this proposition is presented 
using the following diagram. The point 𝑁𝑁  is the 
intersection between the diameter of the circle and a 
line from the terminal of the arc (point 𝐶𝐶) of the acute 
∠𝐶𝐶𝐴𝐴𝐵𝐵, through 𝑀𝑀′, where 𝑀𝑀′ is a reflection of point 
𝑀𝑀. 

Let the arbitrary angle to be trisected be the acute 
∠𝐶𝐶𝐴𝐴𝐵𝐵. From the construction steps it is clear that 
triangle 𝐴𝐴𝐵𝐵𝐶𝐶  is equilateral since 𝐴𝐴𝐵𝐵���� = 𝐵𝐵𝐶𝐶���� = 𝐶𝐶𝐴𝐴���� . 
Therefore this proof is to show the trisection of a 60° 
angle. Consider, 𝑁𝑁𝑀𝑀′������ = 𝑀𝑀′𝐴𝐴����� = 𝐴𝐴𝐶𝐶���� (radii). 𝑀𝑀′𝐴𝐴����� is a 
reflection of 𝐴𝐴𝑀𝑀�����  about point 𝐴𝐴 . Thus triangle 
𝑀𝑀𝐴𝐴𝐵𝐵 ≡ 𝑀𝑀′𝐴𝐴𝐵𝐵′ , by property 𝑆𝑆𝐴𝐴𝑆𝑆 . It implies that 

triangles 𝑁𝑁𝑀𝑀′𝐴𝐴  and 𝑀𝑀′𝐴𝐴𝐶𝐶  are both isosceles. 
Applying the approach used in the previous proof and 
letting ∠𝑀𝑀𝐴𝐴𝐵𝐵 = 𝜃𝜃 , then ∠𝑀𝑀′𝑁𝑁𝐴𝐴 = ∠𝑀𝑀′𝐴𝐴𝑁𝑁 = 𝜃𝜃 . 
Thus ∠𝐴𝐴𝑀𝑀′𝐶𝐶 = 2𝜃𝜃 (‘sum of two interior angles in a 
triangle equal the size of the opposite exterior angle of 
the triangle’). It follows that ∠𝑀𝑀′𝐶𝐶𝐴𝐴 = ∠𝐴𝐴𝑀𝑀′𝐶𝐶 = 2𝜃𝜃 
(base angles of an isosceles triangle). Again, 
∠𝐶𝐶𝐴𝐴𝑀𝑀′ = 180°− 4𝜃𝜃, so that we have: 

∠𝑁𝑁𝐴𝐴𝑀𝑀′ + ∠𝐶𝐶𝐴𝐴𝑀𝑀′ + ∠𝐶𝐶𝐴𝐴𝐵𝐵 = 180° 
(Angles in a straight line).        (5) 

By substituting for ∠𝐶𝐶𝐴𝐴𝑀𝑀′ = 180°− 4𝜃𝜃 we have; 
∠𝐶𝐶𝐴𝐴𝐵𝐵 = 180°− ∠𝑁𝑁𝐴𝐴𝑀𝑀′ + ∠𝐶𝐶𝐴𝐴𝑀𝑀′ 

∠𝐶𝐶𝐴𝐴𝐵𝐵 = 180°− (∠𝑁𝑁𝐴𝐴𝑀𝑀′ + 180°− 4𝜃𝜃)   (6) 
∠𝐶𝐶𝐴𝐴𝐵𝐵 = −𝜃𝜃 + 4𝜃𝜃 = 3𝜃𝜃 

Therefore, 
∠𝐶𝐶𝐴𝐴𝐵𝐵 = 3𝜃𝜃.              (7) 
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Fig. 9  Angle Trisection Proof. 
 

Equation (7) implies that, ∠𝐶𝐶𝐴𝐴𝐵𝐵 = 3∠𝑀𝑀′𝑁𝑁𝐴𝐴 =

3∠𝑀𝑀𝐴𝐴𝐵𝐵 ⟹ 1
3� ∠𝐶𝐶𝐴𝐴𝐵𝐵 = ∠𝑀𝑀𝐴𝐴𝐵𝐵, as required. 

3.3.4 Use of GeoGebra software to justify the Proof 
The use of GeoGebra in this section is to exemplify 

two important aspects from the provided proof. First is 
to show line 𝑁𝑁𝑀𝑀′������  lie on 𝑁𝑁𝐶𝐶����  such that 𝑁𝑁𝑀𝑀′������ =
𝑀𝑀′𝐴𝐴�����and line 𝑀𝑀′𝐴𝐴����� is a radius of the circle as discussed 
earlier. The other aspect verified is that; ∠𝑀𝑀′𝐶𝐶𝐴𝐴 =
∠𝐴𝐴𝑀𝑀′𝐶𝐶 = 2𝜃𝜃. 

From figure (10), it can be visualized that the 
presented cases 𝑁𝑁𝑀𝑀′������ = 𝑀𝑀′𝐴𝐴����� = 𝐵𝐵′𝐴𝐴����� = 5𝑢𝑢𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢 (radii), 
and ∠𝑀𝑀′𝑁𝑁𝐴𝐴 = ∠𝑀𝑀′𝐴𝐴𝑁𝑁 = 𝜃𝜃  where 𝜃𝜃 = 20°  are 
absolutely correct. The methodology made it possible 
to trisect the 60°, and this implies the possibility to 
construct all angles multiples and sub-multiples of 10. 

4. Application 

In this section, a rationalization of the presented 
proofs is made by construction of some regular 
polygons; (Pentagon and Nonagon), to represent some 
of the regular polygons which could not be 
geometrically solved. 

4.1 Construction of a Pentagon to justify the 
construction of a 𝟒𝟒° angle using only a ruler and 
compass 

(1) Draw a circumference of radius 𝐴𝐴𝐵𝐵����. 
(2) Mark a point 𝐶𝐶  on the circumference, 

equidistant 𝐴𝐴𝐵𝐵���� from both 𝐴𝐴 and 𝐵𝐵 centered at 𝐴𝐴. 
(3) Join the chord 𝐶𝐶𝐵𝐵����, and construct its bisection 

through a point 𝐷𝐷 to cut curve 𝐵𝐵𝐶𝐶 at 𝐸𝐸. 
(4) Construct the bisection of ∠𝐸𝐸𝐷𝐷𝐵𝐵 to cut curve 

𝐵𝐵𝐸𝐸 at 𝐹𝐹. 
(5) Further, construct the bisection of ∠𝐸𝐸𝐷𝐷𝐹𝐹 to cut 

curve 𝐹𝐹𝐸𝐸 at 𝐺𝐺. 
(6) Position the pair compass at point 𝐸𝐸 and make 

an arc of length 𝐷𝐷𝐹𝐹���� to cut curve 𝐸𝐸𝐶𝐶 at 𝐻𝐻. 
(7) With the compass at point 𝐻𝐻, mark point 𝐼𝐼 of 

distance 𝐷𝐷𝐺𝐺���� between carve 𝐻𝐻𝐸𝐸. 
(8) Construct the bisection of ∠𝐼𝐼𝐴𝐴𝐵𝐵 to cut curve 

𝐵𝐵𝐼𝐼 at 𝐽𝐽. 
(9) Bisect ∠𝐽𝐽𝐴𝐴𝐵𝐵 at 𝐾𝐾 on curve 𝐵𝐵𝐽𝐽. 
(10) Placing the compass at point 𝐼𝐼, make an arc of 

length 𝐵𝐵𝐾𝐾���� to cut curve 𝐼𝐼𝐵𝐵 at 𝐿𝐿. 
(11) With the compass at 𝐿𝐿, mark a point 𝑀𝑀 on 

the circumference using chord 𝐵𝐵𝐼𝐼 as shown below. 
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Fig. 10  Justification of the Angle Trisection Proof. 
 

(12) Mark equal intervals of length 𝐵𝐵𝑀𝑀����� along the 
circumference to produce figure (11). 

From the construction it is observed that, the chord 
𝐵𝐵𝑀𝑀����� equally stroked 5 times along the circumference 
to produce the regular Pentagon. Let the subtended 
angle 𝑀𝑀𝐴𝐴𝐵𝐵 be 𝜃𝜃 and the ∠𝐴𝐴𝐵𝐵𝑀𝑀 be 𝛼𝛼. Since 𝐴𝐴𝐵𝐵���� 
=𝐴𝐴𝑀𝑀����� (radii of circle), triangle 𝑀𝑀𝐴𝐴𝐵𝐵 is an isosceles 
and therefore ∠𝐴𝐴𝑀𝑀𝐵𝐵 = ∠𝐴𝐴𝐵𝐵𝑀𝑀 = 𝛼𝛼 (base angles of 
an isosceles triangle). Triangle 𝑁𝑁𝐴𝐴𝑀𝑀 ≡ 𝑀𝑀𝐴𝐴𝐵𝐵  by 
property; 𝑆𝑆𝐴𝐴𝑆𝑆. It follows that ∠𝐴𝐴𝑀𝑀𝐵𝐵 = ∠𝐴𝐴𝑀𝑀𝑁𝑁 = 𝛼𝛼. 
Thus ∠𝐵𝐵𝑀𝑀𝑁𝑁 = 2𝛼𝛼  (interior angle of the regular 
pentagon). The size of the angle ∠𝐵𝐵𝑀𝑀𝑁𝑁 can be found 
by applying the expression; 

90° (2𝑛𝑛 − 4) 𝑛𝑛⁄ = 2𝛼𝛼 (Size of one interior angle 
of a regular pentagon), where 𝑛𝑛 is the number of 
sides of the regular polygon 

Since 𝑛𝑛 = 15, it follows;        (8) 
90° (10− 4) 5⁄ = 2𝛼𝛼          (9) 

Therefore, 2𝛼𝛼 = 108° and 𝛼𝛼 = 54°    (10) 
∠𝑀𝑀𝐴𝐴𝐵𝐵 = 𝜃𝜃 = 180°− 2𝛼𝛼 = 180°− 108° = 72°  (11) 

Thus 𝜃𝜃 = 72°. 
4.1.1 Construction of a Nonagon to justify the 

construction of a 𝟏𝟏𝟒𝟒° angle using only a ruler and 
compass 

(1) Draw a circumference of radius 𝐴𝐴𝐵𝐵����. 
(2) Mark a point 𝐶𝐶  on the circumference, 

equidistant 𝐴𝐴𝐵𝐵���� from both 𝐴𝐴 and 𝐵𝐵 centered at 𝐴𝐴. 
(3) Join the chord 𝐶𝐶𝐵𝐵����, and construct its bisection 

through a point 𝐷𝐷 to cut curve 𝐵𝐵𝐶𝐶 at 𝐸𝐸. 
(4) Construct the bisection of ∠𝐸𝐸𝐷𝐷𝐵𝐵 to cut curve 

𝐵𝐵𝐸𝐸 at 𝐹𝐹. 
(5) Further, construct the bisection of ∠𝐸𝐸𝐷𝐷𝐹𝐹 to cut 

curve 𝐹𝐹𝐸𝐸 at 𝐺𝐺. 
(6) Position the pair compass at point 𝐸𝐸 and make 

an arc of length 𝐷𝐷𝐹𝐹���� to cut curve 𝐸𝐸𝐶𝐶 at 𝐻𝐻. 
(7) With the compass at point 𝐻𝐻, mark point 𝐼𝐼 of 

distance 𝐷𝐷𝐺𝐺���� between carve 𝐻𝐻𝐸𝐸. 
(8) Construct the bisection of ∠𝐼𝐼𝐴𝐴𝐵𝐵 to cut curve 

𝐵𝐵𝐼𝐼 at 𝐽𝐽. 
(9) Bisect ∠𝐽𝐽𝐴𝐴𝐵𝐵 at 𝐾𝐾 on curve 𝐵𝐵𝐽𝐽. 
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Fig. 11  Classical Construction of a Pentagon. 
 

 
Fig. 12  Geometrical Construction of a Nonagon. 
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(10) Placing the compass at 𝐼𝐼 , mark a point 𝐿𝐿 
distance 𝐵𝐵𝐾𝐾���� on curve 𝐼𝐼𝐻𝐻. 

(11) Make equal intervals of length 𝐼𝐼𝐵𝐵��� along the 
circumference to produce the figure below. 

In this case, the chord 𝐿𝐿𝐵𝐵  equally marked 9 
intervals along the circumference to produce the 
regular nonagon. Let the subtended ∠𝐿𝐿𝐴𝐴𝐵𝐵 be 𝜃𝜃 and 
also let ∠𝐴𝐴𝐵𝐵𝐿𝐿 be 𝛼𝛼 . Since lines 𝐴𝐴𝐵𝐵����  and 𝐴𝐴𝐿𝐿����  are 
equal (circle radii), triangle 𝐿𝐿𝐴𝐴𝐵𝐵 is an isosceles and 
therefore ∠𝐴𝐴𝐿𝐿𝐵𝐵 = ∠𝐴𝐴𝐵𝐵𝐿𝐿 = 𝛼𝛼  (base angles of an 
isosceles triangle). Triangle 𝑀𝑀𝐴𝐴𝐿𝐿 ≡ 𝐿𝐿𝐴𝐴𝐵𝐵 by property; 
𝑆𝑆𝐴𝐴𝑆𝑆 . It follows that ∠𝐴𝐴𝐿𝐿𝐵𝐵 = ∠𝐴𝐴𝐿𝐿𝑀𝑀 = 𝛼𝛼 . Thus 
∠𝐵𝐵𝐿𝐿𝑀𝑀 = 2𝛼𝛼 (interior angle of the regular nonagon). 
The size of the angle ∠𝐵𝐵𝐿𝐿𝑀𝑀  can be found by 
applying the expression for calculating the interior 
angles size as; 

90° (2𝑛𝑛 − 4) 𝑛𝑛⁄ = 2𝛼𝛼 
(Size of one interior angle of a regular nonagon), 

where 𝑛𝑛 is the number of sides of the regular 
polygon.                                 (12) 

Here, 𝑛𝑛 = 9  and therefore using 𝑛𝑛  in equation 
(12); 

90° (18− 4) 9⁄ = 2𝛼𝛼 = 140°.      (13) 
Therefore 

𝛼𝛼 = 70°.               (14) 
∠𝐿𝐿𝐴𝐴𝐵𝐵 = 𝜃𝜃 = 180°− 2𝛼𝛼 = 180°− 140° = 40°. (15) 

Thus 𝜃𝜃 = 40° as it is expected. 

5.0 Revised Errors in the Classical 
construction of Angles in General Paper [3] 

5.1.0 Use of GeoGebra software to illustrate the fault 
in construction of 𝟏𝟏𝟒𝟒° in the given method. 

According to the article ‘Classical construction of 
angles in general’, the author presented the following 
steps of constructing an angle of 50° [3]; 

(1) Draw a straight line and mark two points 𝑂𝑂 and 
𝑃𝑃 on the line. 

(2) Mark a point 𝑄𝑄 equidistant 𝑂𝑂𝑃𝑃���� from both 𝑂𝑂 
and 𝑃𝑃 and draw an arc 𝑃𝑃𝑄𝑄 centered at 𝑂𝑂. 

(3) Join the chord 𝑄𝑄𝑃𝑃���� , and draw its bisector 

through a point R to cut curve PQ at S. 
(4) Draw the bisector of angle 𝑆𝑆𝑅𝑅𝑃𝑃  to cut the 

curve 𝑃𝑃𝑆𝑆 at 𝑇𝑇. 
(5) Place your compass at point 𝑄𝑄 and make a 

small arc of length 𝑅𝑅𝑇𝑇���� to cut curve 𝑆𝑆𝑄𝑄 at 𝑈𝑈. 
(6) Join the point 𝑈𝑈  to 𝑂𝑂  and there you have 

∠𝑈𝑈𝑂𝑂𝑃𝑃 =  50° . 
The steps were carried out for; compass and ruler 

construction, and also using the GeoGebra software as 
illustrated in figures (13) and (14). 

From figure (13), the author did not provide a proof 
that the method would provide an angle of exactly10°. 
In figure (14), it is clear that ∠𝑈𝑈𝑂𝑂𝑃𝑃 =  49.78° and 
not ∠𝑈𝑈𝑂𝑂𝑃𝑃 =  50°  as stated in the article. This 
implies that the generated chord 𝑅𝑅𝑇𝑇����  subtends an 
angle of 10.22°  at point 𝑂𝑂 , and not 10°  as 
discussed. 

5.1.1 Use of GeoGebra software to illustrate the 
mistake in construction of 𝟒𝟒°  from the given 
method. 

In his work, the author described how to produce an 
angle of 𝟒𝟒° using the traditional drafting tools of 
Greek’s geometry. The following is the procedure of 
construction presented in the work; 

(1) Draw a straight line between two points 𝑂𝑂 and 
𝑃𝑃. 
 

 
Fig. 13  Wrong illustration of constructing 𝟓𝟓𝟒𝟒° angle for 
compass-ruler construction. 
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Fig. 14  Illustration that the size of ∠𝑼𝑼𝑼𝑼𝑼𝑼 =  𝟒𝟒𝟒𝟒.𝟕𝟕𝟒𝟒° and not 𝟓𝟓𝟒𝟒° using GeoGebra Software 
 

(2) Mark a point 𝑄𝑄 equidistant 𝑂𝑂𝑃𝑃���� from both 𝑂𝑂 
and 𝑃𝑃 and draw an arc 𝑃𝑃𝑄𝑄 centered at 𝑂𝑂. 

(3) Join the chord 𝑄𝑄𝑃𝑃����, and construct its bisector 
through a point 𝑅𝑅 to cut curve 𝑃𝑃𝑄𝑄 at 𝑆𝑆. 

(4) Construct the bisector of angle 𝑆𝑆𝑅𝑅𝑃𝑃  to cut 
curve 𝑃𝑃𝑆𝑆 at 𝑇𝑇. 

(5) Further, construct the bisector of angle 𝑆𝑆𝑅𝑅𝑇𝑇 to 
cut curve 𝑆𝑆𝑇𝑇 at 𝑈𝑈. 

(6) Position the pair compass at point 𝑃𝑃 and make 
an arc of length 𝑅𝑅𝑈𝑈����  to cut curve 𝑃𝑃𝑇𝑇𝑈𝑈𝑆𝑆  at 𝑉𝑉 . 
∠𝑉𝑉𝑂𝑂𝑃𝑃 =  8° 

The construction was performed for ruler-compass 
construction and also using the GeoGebra software 
and the results presented in figures (15) and (16) 
respectively. 

From figure (16), the obtained results does not 
correctly agree with the statement that the generated 

chord 𝑅𝑅𝑈𝑈���� would always subtend an angle of 8° at a 
point. Contrary to figure (16), it is evident from the 
construction that the equivalent angle of chord 𝑅𝑅𝑈𝑈���� is 
8.22° and not exactly 8° as presented. 
 

 
Fig. 15  The incorrect presentation of constructing 𝟒𝟒° 
angle for compass-ruler construction. 
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Fig. 16  Illustration that the size of ∠𝑽𝑽𝑼𝑼𝑼𝑼 =  𝟒𝟒.𝟑𝟑𝟑𝟑° and not 𝟒𝟒° using GeoGebra software 
 

6. Results and Discussion 

This paper has presented a flawless methodology of 
solving the ancient problem of angle trisection. 
Through  the  ages,  mathematicians  sought  the 
trisection of an arbitrary angle but no geometrical 
proof has been found by this day. An ambiguous proof 
of the angle trisection impossibility closed the doors 
in solving this crucial problem by assuming it 
impossible [1, 2, 4, 12-15]. However, mathematicians 
and other practitioners still crack their minds to have 
the problem solved under the stated restrictions of 
Greek’s geometry. It has well been defined that there 
exists a considerable ration between any two angles at 
a difference of 10° from each other, but this novel 
reflection was drawn in an erratic manner with no 
justified  proof [3]. This  present  proof  concerns 

revealing a correct geometric theorem of trisecting an 
arbitrary angle, and its precision confirmed by the 
trisection of 48°  and 60°  angles. A proposition 
governed by use of compass and ruler is presented 
contrary to the Archimedes theorem of having a 
marked straightedge notched in two places [24]. 
Through this work, it has been shown that, the general 
consideration of angle trisection solution as a cubic 
equation solution, genetically corresponds to solving 
the trisection of an angle in solid geometry. 
Geometrically, an angle is defined by two rays with a 
common endpoint, and only a solid angle can be 
solved in a 3𝐷𝐷  consideration. Some algebraic 
irrationalities are constructible in plane geometry as 
stated before, and the fact that a straight line segment 
can be proportionally fragmented and its proof did not 
concern degree three polynomials, shows the 
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uncertainty in the Pierre Wantzel’s proof of 
impossibility. Thus the cubic equation 𝑥𝑥3 − 3𝑥𝑥 − 1 =
0 is not geometrically precise. GeoGebra 5.0 software 
was used to exemplify the correctness of the proposed 
method, and also to show the consistency of the 
construction for both Euclidean constructions and the 
computer aided design (CAD) approaches. The choice 
of using the open source GeoGebra as one of the 
interactive geometry software was because of its good 
geometry environment (Toolbox) compared to some 
other software, and its ease in application. 

7. Conclusion 

The problem of trisecting an angle has pondered in 
the minds of mathematicians since the antiquity, but 
no geometric algorithm has been made to solve the 
problem. Most of the presented methodologies bend 
the stated rules, and none has met the desired level of 
accuracy [22]. This novel work presents a method of 
trisecting an angle using the traditional Greek’s tools 
of geometry and its precision depicted in the 
construction of some regular polygons which could 
not been correctly constructed under the set limits [30]. 
This paper presents a reasonable proof of redressing 
the problem, against the early consideration of 
impossibility in slicing an angle into desired fraction. 
From the achieved results it can reasonably be 
concluded that, it is geometrically possible to fraction 
an angle to the required proportion. In the work, an 
attempt has been made to bring out the misconception 
of the ancient problem, by defining the general 
algebraic error in considering the trisection of an angle 
as a cubic problem, from the presented impossibility 
proof. The construction of 2°  angle implies the 
possibility to construct all the angles measurable using 
the protractor and their multiples or sub multiples, as 
discussed [3]. Thus the problem of trisecting an 
arbitrary angle, or the partitioning of a given angle 
into a certain ratio and vice versa is possible for 
compass-ruler construction. The revealed approach is 
contained in the formal Greek’s rules of geometry. 
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