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Abstract

In this study, we consider the parameter estimation of a three-parameter
continuous distribution, namely, power Lomax distribution proposed by
[7], when the lifetime experiments are under Type-II Progressively Hy-
brid censoring scheme. Expectation-Maximization algorithm was used
to compute the Maximum Likelihood Estimators. Simulation was used
to evaluate the performance of the maximum likelihood estimates in
terms of average biases and root mean square errors.
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1 Introduction

The Lomax distribution proposed by [12] as a kind of Pareto-II was introduced
originally for modelling business data and has been widely applied in a variety
of contexts, thanks to its flexibility. In lifetime models, it is considered as
an important model and belongs to the family of decreasing failure rate (see
[5]). [4] found that this distribution can be used as heavy tailed alternative
to the exponential, Weibull and gamma distributions. Further, it is related to
the Burr family of distributions. Many authors have proposed extensions of
the Lomax distribution and the three-parameter continuous distribution which
we have power Lomax (POLO) distribution developed by [7], is one of them.
POLO distribution accommodates both decreasing and inverted bathtub haz-
ard rate that is required in various survival analysis. Some works have been
done using this distribution such as the recurrence relations between the sin-
gle and the product moments of the K-th upper record values from POLO
distribution,introduced by [1]; recurrence relations between the single and the
product moments of the order statistics from POLO distribution proposed by
[2]. In reliability and lifetime experiments, it is difficult to collect a sufficient
number of observations or to observe continuously occurrence of a given event
(incomplete data, which are most of time censored). On the other hand, cen-
soring is considered in order to save time and reduce the number of failed items.
Depending on the circumstances, there is a kind of censoring and the two most
common censoring schemes are the type I and type II censoring schemes. The
so-called Type-I censoring scheme describes the situation where the experiment
continues up to a pre-specified time T. On the other hand, the Type-II censor-
ing scheme requires the experiment to continue until a pre-specified number
of failures occurs. [8] introduced the hybrid censoring scheme, which is the
mixture of Type-I and Type-II censoring schemes and considered the situation
where the lifetime follows the exponential distribution. One of the drawbacks
of Type-I, Type-II and Hybrid censoring schemes is that they do not allow the
removal of units at points other than the terminal point of the experiment. To
overcome this problem, the progressive censoring schemes has been introduced
few years ago which allow the experimenter to remove units before the end of
the experiment.
In this work, we consider Type-II progressive hybrid censoring scheme in-
troduced by [11] like a mixture of type-I and type-II progressive censoring
schemes. This censoring allows the removal of units during the experiment
and ensures that the length of the experiment can not exceed a pre-specified
time point T. We suppose that n independent items are put on a life-testing
experiment at the same time and the lifetimes of the n items are denoted by
X1, ..., Xn. The number m < n of complete failures observed are fixed at the
beginning of the experiment, and R1, ..., Rm are m pre-fixed integers satisfying
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R1 + ...+Rm +m = n. At the time of first failure X1:m:n, R1 of the remaining
units are randomly removed. Similarly at the time of the second failure X2:m:n,
R2 of the remaining units are removed and so on. If the m− th failure Xm:m:n

occurs before the time point T , the experiment stops at the time point Xm:m:n.
On the other hand suppose the m− th failure does not occur before time point
T and only J failures occur before the time point T , where 0 ≤ J < m , then
at the time point Tall the remaining R∗J units are removed and the experi-
ment terminates at the time point T , where R∗J = n − (R1 + ... + RJ) − J .
Hence, under Type-II progressively hybrid censoring scheme, we have one of
the following types of observations;

Case I : {X1:m:n, ..., Xm:m:n} ; if Xm:m:n < T, or (1)

Case II : {X1:m:n, ..., XJ :m:n} ; if XJ :m:n < T < XJ+1:m:n. (2)

Note that for Case II, XJ :m:n < T < XJ+1:m:n < ... < Xm:m:n and XJ+1:m:n, ..., Xm:m:n

are not observed.

[9] showed that under type-II progressive censoring, the Expectation - Max-
imization (EM) algorithm outperforms the Newton Raphson method when the
data follows Lomax distribution. [10] considered also the type-I progressively
hybrid censoring scheme under the assumption that the lifetime follows the
Burr XII distribution. They have used the EM algorithm to compute the
maximum likelihood estimates (MLEs) of the model parameters.

In this paper Maximum Likelihood estimation of the three-parameter POLO
distribution is considered under Type II progressive hybrid censoring scheme.
Expectation-Maximization (EM) algorithm is used to compute the maximum
likelihood estimates (MLEs).

2 Parameter Estimation

2.1 Model Description

The random variable X is said to have POLO distribution, if the probability
density function (PDF) is of the following form;

f(x) = αβλαxβ−1
(
λ+ xβ

)−α−1
, x > 0, α, β, λ > 0. (3)

and the cumulative distribution function (CDF) is of the following form;

F (x) = 1− λα
(
λ+ xβ

)−α
, x > 0, α, β, λ > 0. (4)
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2.2 Maximum Likelihood Estimators

Given a type-II progressive hybrid censoring sample, the likelihood function
for the two different cases are as follows

Case I : L(θ) = C1

m∏
i=1

f(xi:m:n) [1− F (xi:m:n)]Ri . (5)

Case II : L(θ) = C2

J∏
i=1

f(xi:m:n) [1− F (xi:m:n)]Ri [1− F (T )]R
∗
j . (6)

where, C1 =
∏m

i=1

[
n−

∑i−1
k=1(1 +Rk)

]
, C2 =

∏J
i=1

[
n−

∑i−1
k=1(1 +Rk)

]
and

R∗J = n− (R1 + ...+RJ)− J.

Let θ = (α, β, λ) and according to the two cases defined above,ignoring the
constants, the joint likelihood function is given as follows;

Case I:

L1(θ) = (αβ)mλnα

(
m∏
i=1

xβ−1i

)(
m∏
i=1

(
λ+ xβi

)−α(1+Ri)−1)
. (7)

Case II:

L2(θ) = (αβ)Jλnα

(
J∏
i=1

xi

)β−1( J∏
i=1

(
λ+ xβi

)−α(Ri+1)−1
)(

T β + λ
)−αR∗

J . (8)

Combining (7) and (8),we get the following likelihood function;

L(θ) ∝ (αβ)Dλnα

(
D∏
i=1

xi

)β−1( D∏
i=1

(
λ+ xβi

)−α(Ri+1)−1
)(

T β + λ
)−αR∗

D .

Where, for case I, D = m, R∗m = 0 and for case II, D = J , R∗J = n−
∑J−1

i=1 Ri−J .

Hence, the combined log-likelihood is given by:

l(θ) = Dlnα+Dlnβ+nαlnλ+(β−1)
D∑
i=1

ln(xi)−
D∑
i=1

[α(Ri+1)+1]ln(λ+xβi )−αR∗Dln(λ+T β).

(9)
Differentiating equation (9) with respect to α, β and λ, we get the following
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normal equations

D
α

+ nlogλ−
∑D

i=1(Ri + 1)log(λ+ xβi )−R∗Dlog(λ+ T β) = 0

D
β

+
∑D

i=1 logxi −
∑D

i=1
xβi logxi[α(Ri+1)+1]

λ+xβi
− αR∗

DT
β logT

λ+Tβ
= 0

nα
λ
−
∑D

i=1
α(Ri+1)+1

λ+xβi
− αR∗

D

λ+Tβ
= 0

(10)

It is obvious that the solution of the system (10) are not in the closed forms.

2.3 EM Algorithm

The EM algorithm proposed by [6] is an iterative procedure for comput-
ing the maximum likelihood estimators when we are dealing with incom-
plete data. Estimating the unknown parameters of POLO distribution un-
der Type-II progressively hybrid censoring can be viewed as an incomplete
data problem. We can only observe the complete failure times of D units as
X1:m:n, X2:m:n, ..., XD:m:n in the Type-II progressively hybrid censoring experi-
ment. We denote by X = {X1:m:n, X2:m:n, ..., XD:m:n} and
Z = {Zij , j = 1, 2, ..., Ri; i = 1, 2, ..., D} ∪ {ZTj , j = 1, 2, ..., R∗D} the observed and
missing data, respectively. Where Zij, j = 1, 2, ..., Ri; i = 1, 2, ..., D stands for
the j-th censored variables at the failure time Xi:m:n, and ZTj, j = 1, 2, ..., R∗D
denotes the j-th censored variables at the failure time T. So, the complete data
can be denoted as W = (X,Z) and the joint density function of complete data
based on Type-II progressively hybrid censoring scheme is given by;

Lc(θ) =
D∏
i=1

[
f(xi:m:n)

Ri∏
j=1

f(zij)

] R∗
D∏

j=1

f(zTj). (11)

Using (11), the complete log likelihood function of POLO distribution based
on type-II progressive hybrid censoring is given as

lc(θ) = nlogα+ nlogβ + nαlogλ+ (β − 1)
D∑
i=1

log(xi)− (α+ 1)
D∑
i=1

log(λ+ xβi )

+ (β + 1)
D∑
i=1

Ri∑
j=1

log(zij)− (α+ 1)
D∑
i=1

Ri∑
j=1

log(λ+ zβij) + (β + 1)

R∗
D∑

j=1

log(zTj)

− (α+ 1)

R∗
D∑

j=1

log(λ+ zβTj).
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The E-step involves the computation of the conditional expectation Eθ(k)
[
lc(θ) | X = x, θ(k)

]
which we call pseudo log-likelihood function Q(θ; θ(k)) defined as

Q(θ|θ(k)) = nlogα+ nlogβ + nαlogλ+ (β − 1)

D∑
i=1

log(xi)− (α+ 1)

D∑
i=1

log(λ+ xβi )

+ (β + 1)

D∑
i=1

Ri∑
j=1

E [log(zij) | zij > xi]− (α+ 1)

D∑
i=1

Ri∑
j=1

E
[
log(λ+ zβij) | zij > xi

]

+ (β + 1)

R∗
D∑

j=1

E [log(zTj) | zTj > T ]− (α+ 1)

R∗
D∑

j=1

E
[
log(λ+ zβTj) | zTj > T

]
.

In Type-II progressive hybrid censoring, we denote the conditional PDF of
all censored data zij, for i = 1, 2, ..., D, j = 1, 2, ..., Ri and zTj, for
j = 1, 2, ..., R∗D, respectively, as follows:

fZ/X(zij) =
f(zij)

1− F (Xi:m:n)
, zij > xi:m:n. (12)

and

fZ/X(zTj) =
f(zTj)

1− F (T )
, zTj > T. (13)

Using (12) and (13), we compute the expectations which are in the pseudo
log-likelihood function. It follows that,

E [log(z) | z > xi] =
αβλα

1− F (xi)


(
λ+ xβi

)−α
log(xi)

αβ
+K1

 .
= A1(xi; θ).

where

K1 =
1

αβ2λα

∫ ci

0

yα−1(1− y)−1dy with ci =

(
1 +

xβi
λ

)−1
.

By analogy,

E [log(zTj) | zTj > T ] =
αβλα

1− F (T )

[(
λ+ T β

)−α
log(T )

αβ
+K2

]
.

= A2(T, θ).

Where,

K2 =
1

αβ2λα

∫ c

0

yα−1(1− y)−1dy with c =

(
1 +

T β

λ

)−1
.
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On the other hand, we have

E
[
log(λ+ zβij) | zij > xi:m:n

]
=

1

α
+ log(λ+ xi

β).

= B1(xi; θ).

By analogy,

E
[
log(λ+ zβTj) | zij > T

]
=

1

α
+ log(λ+ T β).

= B2(T ; θ).

Therefore, the pseudo log-likelihood function becomes

Q(θ|θ(k)) = nlogα+ nlogβ + nαlogλ+ (β − 1)
D∑
i=1

log(xi)− (α+ 1)

D∑
i=1

log(λ+ xβi )

+ (β − 1)
D∑
i=1

RiA1(xi; θ
(k))− (α+ 1)

D∑
i=1

RiB1(xi; θ
(k)) + (β − 1)R∗DA2(T ; θ

(k))

− (α+ 1)R∗DB2(T ; θ
(k)).

The M-step involves the calculation of the estimate θ(k+1) = (α(k+1), β(k+1), λ(k+1))
of θ = (α, β, λ) by maximizing Q(θ|θ(k)) , where θ(k) is an estimate of θ at the
kth iteration.
Then, θ(k+1) = (α(k+1), β(k+1), λ(k+1)) is given by the following system

n
α

+ nlogλ−
∑D

i=1 log(λ+ xβi )−
∑D

i=1RiB1(xi; θ
(k))−R∗DB2(T ; θ(k)) = 0

n
β

+
∑D

i=1 log(xi)− (α + 1)
∑D

i=1
xβi log(xi)

λ+xβi
+
∑D

i=1RiA1(xi; θ
(k)) +R∗DA2(T ; θ(k)) = 0

nα
λ
− (α + 1)

∑D
i=1

1

λ+xβi
= 0

Given β(k+1) , λ(k+1) and using the first equation in the above system, α(k+1)

is given such as

α(k+1) =
n∑D

i=1 log(λ(k+1) + xβ
(k+1)

i ) +
∑D

i=1RiB1(xi; θ(k)) +R∗DB2(T ; θ(k))− nlogλ(k+1)
.

(14)
We can see clearly, β(k+1) and λ(k+1) are not in the closed form. In that case,
[6] proposed the generalized EM algorithm (GEM algorithm) for which the
M-step requires θ(k+1) to be chosen such that

Q(θ(k+1)|θ(k)) ≥ Q(θ(k)|θ(k)), where θ = (α, β, λ). (15)

In this work, we are using the EM gradient algorithm which approximates the
M-step of the EM algorithm by using one step of the Newton-Raphson method.
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Let us put α = h(β, λ) where α is define like in the equation (14). Replacing
α in the (14) by h(β, λ), we obtained the profile pseudo log-likelihood function
Q∗(θ∗|θ) where θ∗ = (β, λ) and θ = (α, β, λ). It is given by

Q∗(θ∗|θ(k)) = nlog (h(β, λ)) + nlogβ + nh(β, λ)logλ+ (β − 1)
D∑
i=1

log(xi)

− (h(β, λ) + 1)
D∑
i=1

log(λ+ xβi ) + (β − 1)
D∑
i=1

RiA1(xi; θ
(k))

− (h(β, λ) + 1)

D∑
i=1

RiB1(xi; θ
(k)) + (β − 1)R∗DA2(T ; θ

(k))

− (h(β, λ) + 1)R∗DB2(T ; θ
(k)).

So that, in the M-step, instead of to apply the one step of the Newton-Raphson
on Q(θ|θ(k)), we apply it on Q∗(θ∗|θ(k)) and we compute the estimate of α at
the (k + 1)th iteration as follows:

α̂(k+1) = h(β̂(k+1), λ̂(k+1)).

3 Simulation study

In this section, simulations are conducted in order to illustrate the performance
of the EM algorithm for different combinations of sample sizes and censoring
schemes. Consider the following three censoring schemes:
Scheme 1: R1 = R2 = · · · = Rm−1 = 0, Rm = n−m,
Scheme 2: R1 = n−m, R2 = R2 = · · · = Rm−1 = 0,
Scheme 3: R1 = R2 = · · · = Rm−1 = 1, Rm = n− 2m+ 1
under three different time-points: T1 = X[m

3
]:m:n+0.01, T2 = X[ 2m

3
]:m:n+0.01 and

T3 = Xm:m:n + 1, where [π] denotes the integer part of the positive number π.
The algorithm in [3] is used to generate a Type-II progressive hybrid censored
sample from POLO distribution for the parameter value α = 1, β = 2, and
λ = 1. This algorithm is described as follows:

Step 1: Generate m independent and identically distributed random num-
bers (U1, ..., Um) from uniform distribution U[0,1];
Step 2: For i = 1, 2, ...,m, set Zi = −log(1 − Ui), then Z ′is are independent
and identically distributed standard exponential distribution variables;
Step 3: Given n, m and the censoring scheme R = (R1, ..., Rm), obtain a
Type-II progressive censored sample (E1, E2, ..., Em) from standard exponen-
tial distribution using the following system

E1 = Z1

n
,

Ei = Ei−1 + Zi
n−

∑i−1
j=1Rj−i+1

, i = 2, 3, ...,m.
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Step 4: For i = 1, 2, ...,m, set Yi = 1 − exp(−Ei), then Y ′i s form a Type-II
progressive censored data from uniform distribution U[0,1];
Step 5: For i = 1, 2, ...,m, set Xi:m:n = F−1(Yi), where F−1(·) is the inverse
CDF of POLO distribution. So that X ′is form a Type-II progressive censored
data from POLO distribution.
If Xm:m:n ≤ T which is case I, then (X1:m:n, R1), (X2:m:n, R2), ..., (Xm:m:n, Rm)
is called Type-II progressive hybrid censored data of POLO distribution.
Otherwise, ifXm:m:n > T which is case II, then (X1:m:n, R1), (X2:m:n, R2), ..., (XJ :m:n, RJ),
defined the Type-II progressive hybrid censored data, where J is find such that
Xj:m:n < T < Xj+1.

The simulation process of estimation is executed M times (M = 1000) and
the criteria used for evaluation are average bias and root means squared error
(RMSE) of estimates, which are computed as:

Bias =
1

M

M∑
i=1

(θ̂EMi
− θ).

RMSE =

√√√√ 1

M

M∑
i=1

(
θ̂EMi

− θ
)2
.

Where, we suppose θ̂EMi
is the estimate of θ for the ith simulated data set.

Note that the initial guess values are considered to be the same as the true
parameter values.

The results of the simulation study are presented in Tables 1-3. From these
tables, we can see that, globally, the EM algorithm is quite efficient for POLO
distribution under Type-II progressive hybrid censored data and the proposed
method underestimates the parameters. For all given sampling schemes, we
observe that:

1. For fixed n and m as pre-specified time point of experiment increases,
the biases and RMSEs of the estimates for most of estimated parameters
decrease as expected.

2. For fixed n and T as m increases, the biases and RMSEs are decreasing.

3. For fixed m and T as n increases, the biases and RMSEs are increasing
for most of the estimates.

4. For fixed n, m in Table 1, we can observe that the biases and RMSEs for
most of the parameters are smaller in scheme 1, but also with scheme 2
being smaller that scheme 3 under different combinations of sample size.
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Table 1: Average bias of the different estimates and the corresponding RMSE,
when (α, β, λ) = (1, 2, 1) at time point T1 = X[m/3] + 0.01

Bias RMSE

(n,m) schemes α̂ β̂ λ̂ α̂ β̂ λ̂
(30 , 10) 1 -0.349 -0.196 -0.537 0.362 0.201 0.552

2 -0.345 -0.195 -0.542 0.363 0.200 0.564
3 -0.338 -0.198 -0.531 0.362 0.203 0.553

(30 , 15) 1 -0.251 -0.118 -0.495 0.260 0.131 0.513
2 -0.237 -0.099 -0.521 0.258 0.111 0.536
3 -0.237 -0.113 -0.510 0.260 0.126 0.517

(40 , 15) 1 -0.449 -0.221 -0.706 0.481 0.239 0.721
2 -0.473 -0.207 -0.740 0.493 0.213 0.749
3 -0.460 -0.228 -0.713 0.482 0.237 0.723

(40 , 20) 1 -0.422 -0.168 -0.686 0.445 0.181 0.706
2 -0.434 -0.145 -0.711 0.456 0.155 0.732
3 -0.431 -0.164 -0.685 0.446 0.176 0.710

(70 , 30) 1 -0.455 -0.193 -0.717 0.462 0.199 0.723
2 -0.459 -0.161 -0.746 0.466 0.166 0.750
3 -0.460 -0.188 -0.718 0.463 0.194 0.727

5. For fixed n, m in Table 2 and Table 3, biases and RMSEs for most of the
parameters in scheme 2 and scheme 3 are smaller than in scheme 1.

4 Conlusion

In this article, we discussed the estimation for parameters of power Lomax
distribution when the data is coming from Type-II progressive hybrid censor-
ing scheme. The MLEs are computed using EM algorithm. The results of
the simulation study showed that the performance of EM algorithm is quite
sufficient and the method underestimates the unknown parameters.

Acknowledgements. The authors would like to express their sincere
gratitude to African Union for supporting this research at the Pan African
University, Institute for Basic Sciences, Technology and Innovation.
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Table 2: Average bias of the different estimates and the corresponding RMSE,
when (α, β, λ) = (1, 2, 1) at time point T2 = X[2m/3] + 0.01

Bias RMSE

(n,m) schemes α̂ β̂ λ̂ α̂ β̂ λ̂
(30 , 10) 1 -0.215 -0.168 -0.441 0.229 0.185 0.457

2 -0.210 -0.111 -0.519 0.215 0.124 0.527
3 -0.219 -0.158 -0.458 0.225 0.175 0.466

(30 , 15) 1 -0.014 -0.104 -0.338 0.065 0.139 0.346
2 0.047 -0.004 -0.461 0.055 0.071 0.470
3 0.021 -0.060 -0.387 0.053 0.105 0.391

(40 , 15) 1 -0.275 -0.201 -0.541 0.279 0.227 0.544
2 -0.309 -0.076 -0.669 0.317 0.105 0.683
3 -0.273 -0.170 -0.570 0.280 0.194 0.573

(40 , 20) 1 -0.134 -0.125 -0.467 0.140 0.165 0.474
2 -0.168 0.004 -0.621 0.171 0.084 0.630
3 -0.132 -0.071 -0.524 0.137 0.121 0.531

(70 , 30) 1 -0.572 -0.304 -0.866 0.580 0.344 0.870
2 -0.167 -0.033 -0.619 0.168 0.070 0.625
3 -0.538 -0.213 -0.843 0.586 0.259 0.860

Table 3: Average bias of the different estimates and the corresponding RMSE,
when (α, β, λ) = (1, 2, 1) at time point T3 = X[m] + 1

Bias RMSE

(n,m) schemes α̂ β̂ λ̂ α̂ β̂ λ̂
(30 , 10) 1 -0.179 -0.271 -0.239 0.202 0.290 0.253

2 -0.016 -0.048 -0.507 0.039 0.081 0.519
3 -0.102 -0.199 -0.310 0.128 0.218 0.313

(30 , 15) 1 -0.041 -0.208 -0.109 0.155 0.232 0.115
2 0.329 0.039 -0.456 0.336 0.079 0.467
3 0.291 -0.038 -0.306 0.315 0.092 0.308

(40 , 15) 1 -0.194 -0.342 -0.277 0.209 0.366 0.282
2 -0.184 -0.006 -0.678 0.185 0.078 0.684
3 -0.114 -0.209 -0.390 0.127 0.237 0.393

(40 , 20) 1 -0.076 -0.283 -0.138 0.138 0.309 0.144
2 0.048 0.073 -0.620 0.055 0.109 0.629
3 0.160 -0.039 -0.409 0.174 0.107 0.414

(70 , 30) 1 -0.255 -0.586 -0.353 0.259 0.616 0.358
2 0.136 0.024 -0.577 0.145 0.067 0.586
3 -0.281 -0.217 -0.664 0.292 0.264 0.670
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