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Abstract: Survival analysis majors mainly on estimation of time taken before an event of interest takes place. Time taken 

before an event of interest takes place is a random process that takes shape overtime. Stochastic processes theory is therefore 

very crucial in analysis of survival data. The study employed markov chain theory in developing a simple stochastic stomach 

cancer model. The model is depicted with a state diagram and a stochastic matrix. The model was applied to stomach cancer 

data obtained from Meru Hospice. Transition probability theory was used in determining transition probabilities. The entries of 

the stochastic matrix T were estimated using the Aalen-Johansen estimators. The time taken for all the people under the study 

to transit to death was estimated using the limiting matrix. 
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1. Introduction 

In this section, background of the study was discussed by 

outlining the history and impacts of cancer in the world in terms 

of morbidity and mortality. Previous studies by other researchers 

were also reviewed. Study problem was then formulated by 

stating the study objectives. The scope of the study was then 

discussed and the assumptions of the study outlined. 

Background of the study 

American cancer society report 2012 in [1] defines cancer 

as a group of diseases characterized by the uncontrolled 

spread of abnormal cells, which if not controlled, results in 

the death of the person affected.Cancer is caused by both 

external factors such as tobacco intake, infectious organisms, 

chemicals and radiations and internal factors such as 

inherited mutations, hormones and mutations that occur from 

metabolism. Sirpa Heinavaara in [2] argues that survival of 

cancer patients is known to depend on prognostic factors 

such as age of the patient at diagnosis, gender of the patient 

and site of the cancer. According to the Kenya cancer 

statistics and National strategy report in [3], cancer remains a 

global health problem and it is estimated that globally, cancer 

causes more deaths than Human Immunodeficiency Virus, 

Tuberculosis and Malaria combined. World Health 

Organization report in [4] show that cancer accounted for 7.9 

million in the year 2009, which is 13% of all deaths 

worldwide. The annual mortality is attributed to main types 

of cancer which include lung cancer ( 1.3 million deaths), 

stomach cancer(803,000 deaths), colorectal cancer (639000 

deaths), liver cancer( 610000 deaths) and oesophageal cancer 

(380000 deaths). According to Kenya National cancer control 

strategy in [5], the burden of cancer is projected to continue 

rising, with an estimate of 15.5 million new infections and 12 

million deaths by the year 2030. Kenya cancer statistics and 

National strategy report in [6] ranks cancer third in terms of 

morbidity and mortality, accounting for 7% of all deaths 

annually. There are an estimated 39000 new cases of cancer 

each year in Kenya and 27000 deaths annually. 60% of 

Kenyans affected by cancer are below 70 years old and 

therefore productive economically. In women, breast cancer 

leads in morbidity and mortality followed by cervical cancer 

while in men prostate cancer leads in morbidity and mortality. 

Meru Hospice in [7] ranks stomach cancer as the highest 

cause of morbidity and mortality in Meru, followed by breast 

cancer. Cervical cancer is ranked third and prostate cancer 

fourth. At the moment, there are approximately 500 cancer 

cases reported and an average of 5 new cases reported each 
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day. According to Tiwari et al. in [8], cancer has a great 

negative effect on the economies of many countries globally, 

Kenya included. Thus, accurate estimation of the number of 

deaths caused by cancer is very crucial as it helps the 

government in planning, resource allocation and 

communication. Inaccurate predictions result in inefficient 

planning and budgeting resulting in ineffective government 

services. Kenya National cancer control strategy in [9] 

classifies cancer research in Kenya as non commensurate 

with the magnitude of the problem. This is because of the 

inadequate funding and training facilities in cancer research. 

One of the intervention measures suggested in the strategy is 

to strengthen research through cancer data collection, 

analysis, interpretation and dissemination. Besides, there is 

no statistical research on stomach cancer in Meru County or 

if any, it is little known of research, despite stomach cancer 

leading in morbidity and mortality in Meru County. 

Various models have been used in the analysis of survival 

data. Moghimi et al. in [10] used Cox regression model and 

compared it with weibull, exponential and lognormal models 

to evaluate prognostic factors affecting survival of patients 

with stomach cancer. Age of the patients at the time of 

diagnosis and grade of tumour were used as the independent 

prognosis factors. Akaike information criterion was used to 

determine the best model. Results of the data analysis 

showed that Cox and parametric models were approximately 

similar. However, according to Akaike Information Criterion, 

weibull and Exponential models were the most favourable for 

survival analysis. Chun et al. in [11] used Multi-task logistic 

regression model to study patient specific cancer survival 

distributions. The study revealed that Multi-task logistic 

regression method predictions were more accurate than 

popular survival models like Cox and Aalen regression 

models. The study further revealed that using patient specific 

attributes can reduce the prediction error on survival time by 

as much as 20% when compared to using cancer site or stage 

only. Vallinayagam et al. in [12] compared the performance 

of different parametric models like Exponential, Weibull, 

Gompertz, Lognormal and Log-logistic using breast cancer 

patients. From the analysis results,Lognormal model 

recorded the lowest deviance, followed by Log-logistic and 

the Weibull models. Farid et al. in [13] did a review of 

methodological approaches that can be used to deal with 

violation of proportionality assumption using Cox 

proportional hazards model in survival analysis. The four 

modifications suggested in the study were stratification of 

covariates, partitioning of time axis, modelling time 

dependence of the coefficients and lastly to allow the data to 

select the functional form of the time dependence, for 

instance by using splines. Limitation of the Cox Proportional 

hazards model assumption of proportionality of the hazard 

function, which if violated renders the model inapplicable, 

was emphasized in the study. The study suggested the use of 

the four modifications or use of a different model if the 

Proportionality assumption is violated. Uku et al. in [14] 

compared the efficiency of a mixture of two distributions 

with a single distribution in modelling heterogeneous 

survival data. Single distributions like Gamma, Weibull and 

Exponential were compared with mixture distributions of 

Exponential-Gamma, Exponential-Weibull and Gamma-

Weibull. Mixture distribution of any two distributions 

provided a better estimate than any single distribution alone. 

Among the three mixture distributions, Gamma-Weibull 

mixture distribution gave the best model. Duke et al. In [15] 

used Cox Proportional model to forecast survival time for 

cancer patients. Weibull model was also applied to the data 

of patients diagnosed with lung and bronchus cancer in light 

of censoring. The researchers observed that survival time is 

non-negative and consequently its distribution is positively 

skewed. They argued that for positively skewed distribution, 

the option is to use either Exponential or Weibull model. 

However, they noted that Weibull model is more suitable 

since it provides more flexibility than only one parameter of 

the Exponential distribution which results in the assumption 

that all patients are equally likely to die regardless of how 

many years they have survived. Duke et al. In [16] used Cox 

Proportional hazards model to estimate the survival time of 

lung and bronchus cancer patients. To cater for the 

unobserved heterogeneity, a weibull mixture model was 

applied to the data. Age, gender, race and registries were 

used as independent prognostic variables. The results showed 

that age, gender and registry significantly affect individual 

survival time. The study concluded that Weibull distribution 

is more suitable than other long tailed distributions such as 

Log-logistic and Expo-power distributions. Henry A, Glick 

in [17] described Markov models as recursive decision trees 

that are used for modelling conditions that have events that 

May occur repeatedly overtime, or for modelling predictable 

events that may occur overtime like screening for a disease 

after some fixed intervals. The study described various ways 

of estimating transition probabilities. He argued that if 

available data are hazard rates per unit time, they can be 

translated into probabilities by using the formula ���(�) = 1 −
��
��  where ���(�) is the probability of moving from state � at 

the beginning of a period t to state � at the beginning of a 

period t+1; ����  is the instantaneous hazard rate per period 

and t is the length of the period. Juergen Jung in [18] 

estimated transition probabilities for individual health status 

as a function of observables characteristics. The study 

employed three methods. One of the methods used is the 

counting method in which the transition from state ℎ to state �  is estimated by ���(�) = �(�� = �	/���� = ℎ)  = ���∑���� ∑ І(!
�"�)#�$�  where ���(�)  is the average transition 

probability from state ℎ to state �, %�� is the realization of a 

particular transition from state 	ℎ  to state � . The second 

method used in the study is the ordered logit and ordered 

probit regression models. The third method used is the semi 

parametric Cox Proportional hazards model. Abner et al. in 

[19] described markov chain process as a stochastic process 

that describes the movement of an individual through a finite 

number of states. The study identified various methods of 

analyzing time to event data, including Cox Proportional 

hazards model and Kaplan Meier estimation. Heggland in [20] 

argued that in multistate models, the past and the future are 

independent given the present. The researcher argues that 

multistate models are often assumed to be markovian models. 
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The study asserts that a process X(t) is said to be markov if �(&(') = ℎ/&�(� �	g, Ƒs-) � ��&�'� � �/&�(� �g), where 

Ƒs- is the history of the process up to time s(Information 

about the earlier transitions of the process). The study further 

argues that estimation of transition probabilities is done by 

solving the Chapman –Kolmogorov forward equations. The 

study defined %)��'�  to be the number of individuals 

observed to move from state g to state h within an interval (0, 

t). The study estimated %�*�'�, %�,�'� and %*, while %*��'�, 
%,��'�	and %,*�'� were zero for all values of t. %*��'� was 

zero because no transitions from state 2 to state 1 were 

witnessed while %,��'�	and %,*�'� were zero because state 

three is an absorbing state. The study then set %��'� �
%�*�'� - %�,�'�  while ���'�  and �*�'�  were the number of 

healthy and diseased individuals respectively before time t. 

Solutions to Chapman Kolmogorov forward equarions gave 

the estimators of transition probabilities as: �.��
����(, '� �

	∏ �1 	
∆���$��

1��2��
342�5� ), �.**

����(, '� � 	∏ �1 	
∆�67�$��

16�2��
342�5�  and 

�.�*
����(, '� = ∑ �342�5� (, 8����9:�*;8�<�.**

����8� , '�  where 

9:�*;8�< �
∆��6�2��

1��2��
. Snijders in [21] discussed different 

methods of estimating transition probabilities such as 

Kaplan-Meier estimator, Nelso-Aalen estimator and Aalen-

Johansen estimator as the non parametric estimators and Cox 

Proportional hazards model as the semi-parametric estimator. 

Kaplan-Meier is used to estimate the survival function S(t). 

Kaplan-Meier concept is generalized to the Aalen-Johansen 

estimator for the multi-state models. The study assunes an 

ordered list 0 > '� > '* > 	 	 		> '�. S(t) is split into a 

product ?�'� � ��8 @ '� � ��8 @ '�/8 @ '������8 @ '���� . 

A� is defined as the number of observed events at time '� and 

B� as the risk set. The study then defines the estimate of ?�'� 

as ?:	�'� = ∏ �1 	
C�
D�

�#� � . The study introduces Cox 

Proportional hazards model which gives an insight on how 

other factors such as age or sex influence the hazard rate. 

Luis et al. in [22] reviews modelling approaches for multi-

state models and focuses on estimation of quantities like the 

transition probabilities and survival probabilities. The study 

states that multi-state models are characterized through 

transition probabilities between state � to state �; ����(, '� �
��&�'� � �/&�(� � �, E3� ) for �, �F?, (, 'F8, ( G '  or 

through transition intensities H���'� � lim∆�→M
N����,�O∆��

∆�
 

which represent the instantaneous hazard of moving to state � 
conditional on occupying state �. The researcher argues that 

in markov models, transition probabilities can be estimated 

from the intensities by solving the forward Kolmogorov 

equations. The transition probabilities have the following 

expressions; ����(, '� � 
��P�6�3,��OP�7�3,���  (1), �**�(, '� �

�P67�3,��  (2), ��*�(, '� � Q ���

�
3

�(, R�H�*�R��**�(, '�AR  (3). 

The transition probabilities in equations (1), (2) and (3) can 

then be estimated using Kaplan-Meier estimators via the non-

parametric Aalen Johansen model as follows: �.���(, '� �
∏ �1 	 C�6SOC�7S

D�S
34�S5� �, �.**�(, '� � ∏ �1 	 C67S

D6S
34�S5� �  and 

�.�*�(, '� � ∑ �.���(, 'T���34�S5�
C�7S
D�S

�.**�'T, '�. 

Scope of the study 

Simple stochastic stomach cancer model was derived and 

stomach cancer data from Meru County fitted on the model. This 

was analyzed using R software by use of the TPmsm package. 

The main aim of the study was to describe the cancer 

progression among patients and determine the probability of 

moving from one state of cancer to another. A state diagram 

was designed to describe the movement of cancer patients 

from one state to another. Stochastic matrix T was designed 

and its entries computed by fitting the data on the model. The 

study assumed that future states depended only on the current 

state and not on past events and that all the individuals under 

study began from an initial state (‘Healthy state’). 

2. Materials and Methods 

2.1. Introduction 

In this section, model development was discussed. Data 

collection and analysis was also discussed. 

2.2. Simple Stochastic Stomach Cancer Model 

The study employed the following methods: Markov chain 

theory was used to describe the movement of a patient 

through stomach cancer states. The assumption was that 

movement to the next state depended on the current state 

occupied and that all the individuals under study began from 

the same initial state (‘Healthy state’). This was depicted 

with a state diagram. Transition probability theory was used 

in designing the stochastic matrix and deriving the 

transitional probabilities. R software was used in analysis of 

the data by use of the TPmsm package. Stomach cancer data 

was obtained from the Meru Hospice, who are the custodians 

of cancer data in Meru. Data for 274 stomach cancer patients 

was used in the study. 

Stomach cancer model was developed by first identifying 

stomach cancer stages and then deriving transition probabilities. 

Stomach cancer has mainly three stages (Tumour grades); that is 

grade 1, grade 2 and grade 3. The model was limited to grade 3 

stage because of the nature of secondary data available. 

Consequently, the model has three states namely: 

H-State in which an individual is free from stomach cancer, 

S-state in which the individual is suffering from stomach cancer 

and D-State in which an individual dies of stomach cancer. This 

was formalized in the following transition diagram: 

 

Figure 1. Model state diagram. 



115 Josphat Mutwiri Ikiao et al.:  A Simple Stochastic Stomach Cancer Model with Application  

 

Where: �UV(�) = The probability of moving from health state to 

sickness state �VW(�)= The probability of moving from sickness state to 

death state �VU(�)= The probability of moving from sickness state to 

health state �UW(�)= The probability of moving from health state to death 

state �VV(�)= The probability of being in the sickness state and 

remaining there for sometime �UU(�) = The probability of being in the health state and 

remaining there for sometime 

 Transition probability matrix T takes the form: 

8 = X�UU(�) �UV(�) �UW(�)�VU(�) �VV(�) �VW(�)�WU(�) �WV(�) �WW(�)
Y 

The transition probability matrix T has entries that 

represent the probabilities of moving from one state of 

stomach cancer to another. Notice from figure 2.2.2 that D 

state is an absorbing state, therefore �WW(�) = 1. Therefore T 

takes the form as shown below: 

8 = Z�UU(�) �UV(�) �UW(�)�VU(�) �VV(�) �VW(�)0 0 1 [ 

The transition matrix shows the actual values of the entries 

of the third row; i.e actual entries of �WU(�), �WV(�) and �WW(�). 
Next, the remaining ���(�)  for � = E, ?	and � = E, ?, \	was 

computed. If an individual is in state �  at time 	' , then the 

probability of moving from state �  to state �  in a small 

interval (', ' + ∆') is given by: 

���(�) = lim∆�→] N{(�,�O∆�)/2_�}∆�               (1) 

But a(') = lim∆�→M N(�524�O∆�)∆�  and ?(') = �(8 ≥ ') 

Therefore ���(�) = lim∆�→M N{(�524�O∆�)/2_�}∆�  = 

lim∆�→M N(�524�O∆�)∆�N(2_�)  =
b(�)V(�) =− cc�V(�)V(�)                    (2) 

���(�) = − CC� def?(')                         (3) 

= − CC� def?(') = CC� def �V(�)                      (4) 

The estimate of ?(') which is ?:(')was used to estimate �.��(�) in equation 4 above. 

�.��(�) = CC� def �V:(�)                       (5) 

The estimate of �.��(�) is given by: 

�.��(�) = CC� def �V(�)g
                         (6) 

From equation 6, �.��(�)  was estimated by use of Aalen-

Johansen estimators as shown by Luis et al. (2010) to be: 

�.��(�) = �.��(�) = �(h(') = 1/h(0) = 1 = ∏ (1 −��5�C�6��OC�7��D��� )                        (7) 

Where �.��(�)  is the probability of moving from state �  to 

state �  for � = 1  and � = 1 (That is the probability of 

remaining in state 1), A�*�� is the number of transitions from 

state 1 to state 2, A�,��is the number of moving from state 1 

to state 3 and B���is the number of people in the health state. 

�.��(�) = �.**(�) = �(h(') = 2/h(' − 1) = 2 = ∏ (1 −��5�C6���OC67��D6�� ) =∏ C67��D6����5�                    (8) 

This is because A*��� = 0. Where �.��(�) is the probability of 

moving from state �  to state � for � = 2	and � = 2 ( That is 

the probability of remaining in state 2 for sometime), A*��� is 

the number of transitions from state 2 to state 1, A*,�� is the 

number of transitions from state 2 to state 3 and B*�� is the 

total number of people sick. 

�.��(�) = �.�*(�) = �(h(') = 2/h(0) = 1) =	∑ �.��(')��5� C�6��D��� �.**(')               (9) 

Where �.��(�)  is the probability of moving from state �  to 

state	� for � = 1 and � = 2, A�*��is the number of transitions 

from state 1 to state 2 and B���  is the number of people 

healthy. 

Next, the derived results in equations 7, 8 and 9 were 

applied on Meru County data. 

3. Results 

3.1. Introduction 

In this section, equations 7,8 and 9 were applied on our 

data to compute the entries of T. The section also discusses 

the results. 

3.2. Transition Matrix 

Equations 7, 8 and 9 were used to generate the entries of T, 

that is the transition probabilities from state 1 to state � = 1,2,3  and transitions from state 2 to state � = 1,2,3  as 

provided below: 

�.��(�) = ∏ (1 − C�6��OC�7��D�����5� ) =0.630            (10) 

�.**(�) = ∏ (1 − C67��D6����5� ) = 0.161              (11) 
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∑ �.��(�)��5� C�6��D��� �.**(�) = 0.027                (12) 

�.�,(�) = 1-�.��(�)-�.�*(�)= 1-0.63-0.027= 0.343. This is because 

every row should total to 1. �.*�(�) =0 since there were no transitions from state 2 to state 

1 recorded 

Therefore �.*,(�) = 1-�.*�(�) -�.**(�) = 1-0-0.161= 0.839 

This was confirmed through R software using the TPmsm 

package codes: 

R>time1<-c('�, '*, ',, 'm, 'n, 'o, 'p, 'q, 'r, '�M ) 

R>event1<-c(h�, h*, h,, hm, hn, ho, hp, hq, hr, h�M ) 

R>Stime<-c('�, '*, ',, 'm, 'n, 'o, 'p, 'q, 'r, '�M) 

R>event<-c(h�, h*, h,, hm, hn, ho, hp, hq, hr, h�M) 

R>age<-c( sf
�	sf
*, 	sf
,, sf
m, sf
n	sf
o, 	sf
p,		sf
q,		 	sf
r, 	sf
�M) 

R>Cancerdata<-

with(Cancerdata,survTP(time1,event1,Stime,event,age)) 

R>Cancerdata 

R>Cancerdata<-transAJ(object=Cancerdata,s=949,t=1460) 

R>Cancerdata 

Where variable time1 represent observed time in state 

1(‘healthy’ state) and variable event1 the corresponding 

status, variable Stime represent the total survival time and 

variable event represent the final status of the individual. 

The transition matrix therefore takes the form: 

8 = t0.630 0.027 0.3430 0.161 0.8390 0 1 y 

The transition matrix T above shows the entries of T, 

which represent the probability of a person to transit from 

one state to another. They present the probability of a person 

moving to state �  given that the person is in state � . For 

instance, the probability of a person moving to state 

2(sickness state) given that he/she is in state 1(health state) is 

0.027. The probability of a person moving to death state 

given that he/she is in health state is 0.343. The probability of 

a stomach cancer patient transiting to a healthy state is zero. 

The probability of a stomach cancer patient remaining in the 

same state for time t is 0.161. The probability of a stomach 

cancer patient transiting to death state is 0.839. Once a 

patient enters death state, he/she cannot go back since death 

is an absorbing state. 

The limiting matrix from T was obtained by: 

limD→z 8D =t0 0 10 0 10 0 1y 

This means that all persons under study will eventually 

transit to death state, either as a result of stomach cancer or 

as a result of other causes. 

4. Conclusions and Recommendations 

4.1. Conclusions 

The following conclusions were made 

Markov chain theory was used to develop a simple 

stochastic stomach cancer model, which was used in 

describing the movement of a person from one state to 

another. Movement of a person from one state of cancer to 

another has been shown to be stochastic and depends on the 

state the person is in at time t. The model was depicted with a 

state diagram and a stochastic matrix. Transition probability 

theory was used to determine the probability of moving from 

one state of cancer to another. The model was applied to the 

data and Aalen-Johansen estimators were used to obtain the 

entries of probability matrix T. The limiting probability 

matrix was obtained from T, by multiplying T by itself n 

times. The results show that once a person enters sickness 

state, the probability of returning to health state is zero. The 

probability of a stomach cancer patient moving to the 

absorbing state is 0.839, which is quite high. The limiting 

probability matrix show that eventually, all the people under 

study will move to death state, either as a result of stomach 

cancer or as a result of other causes. 

4.2. Recommendations 

The following recommendations were made from the 

study: 

a. The study was restricted to three states of stomach cancer. 

Further research should be done to incorporate more 

cancer stages hence more states. 

b. The study used non parametric method in the analysis of 

the data. More research using parametric or semi 

parametric methods should be done to incorporate 

prognostic variables that affect survival time of stomach 

cancer patients. 

c. The study considered right censored data. More research 

should be done to include left censored data 

d. The government and other stakeholders should embrace 

preventive measures instead of curative measures 

e. People should undergo regular cancer screening to 

facilitate early diagnosis 
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