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Abstract 
 

An arbitrary non-smooth functional is estimated using a nonparametric set-up. Exploratory data analysis 
methods are relied on to come up with the functional form for the sample to allow both robustness and 
optimality to be achieved. An infinite number of parameters are involved and thus the Hilbert sample 
space is a natural choice. An important step in understanding this problem is the normal means problem, 

�(�) =
�

�
∑ |��|
�
��� . The basic difficulty of estimating �(�) as defined can be traced back to the non 

differentiability of the absolute value function, at the origin. Accordingly, constructing an optimal 
estimator is not easy partly due to the nonexistence of an unbiased estimate of the absolute value function. 
Therefore, best polynomial approximation was used to smooth the singularity at the origin and then an 
unbiased estimator for every term in the expansion constructed by use of Hermite polynomials when the 
averages are bounded by a given constant M > 0 say. The expansion of the Gaussian density function in 
terms of Hermite polynomials gives a clear and almost accurate estimate that admits cumulant generating 
function; the Saddle point approximation. Additional precision is obtained by using a higher order Taylor 
series expansion about the mean resulting in Edgeworth expansion techniques. 
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1 Introduction 
 
Estimating statistical functionals play a major role in applied statistical analysis. For instance, estimating the 
probability density functions play a major role in many varied fields of science, engineering and the earth 
sciences. Functional estimation is one of the major tests used when dealing with nonparametric statistics. 
Having the knowledge of the functional form, further statistical issues such as estimation of quantities and 
construction of stochastic models for various applications can be handled. 
 
Finding an estimator for a non-smooth functional in the NP set-up involve highly structured problems which 
arise differently from the ones in which mainline numerical methods have been designed [1]. They have 
different optimal rates of convergence [2,3]. Also, the estimation of non-smooth functional is faced with the 
curse of dimensionality. 
 
Researchers have shown that the most difficult testing problem is to find the accurate critical test statistic 
value for small sample sizes and when sample sizes are moderately large. In such circumstances an 
approximation method for assessing the density of the test statistic is used to estimate the exact critical 
value. In the previous studies, polynomial smoothers have been suggested. However, such smoothers tend to 
perform poorly in the tail areas [4]. 
 
Parametric approach is based on the assumptions that the parent population has a known distribution. The 
distribution family is usually decided upon for a particular situation, and fitting a PDF then means 
determination of parameters by some estimation technique. The method of maximum likelihood and the 
method of moments are known examples of parametric methods [5]. The likelihood level is expressed in 
terms of the variance of the estimator which usually approach zero at the speed of the square root of the 
sample size [6]. 
 
In contrast to the foregoing is the NP smoothing technique. The variance alone does not exhaustively 
quantify the convergence of curve estimators. There is also a bias, which is common in the framework 
smoothing techniques. This is why accuracy is calculated by combining the variance and squared bias. This 
smoothing technique effectively reveals important structures from noisy data. 
 
Approximations are never feasible when done on the global scales, but locally. This is possible since 
concentration of measure at a certain point allows approximation to be done locally [6]. Intuitively, the bias 
is generally due to the set of points where the function �(�) changes suddenly. For �(�) = −� ln�  or 
��,� > 0, the most non-smooth point is p = 0. Briefly, approximating locally around the nonsmooth points 
reduce bias. The approximation can also be obtained through series expansions, e.g. Gram-Charlier and 
Edgeworth series [7]. 
 
In regard to estimating the functional �(�), the squared error risk, �� of an arbitrary estimator �� is defined 

as ���(�) − ���
�
 where �� is expectation with respect to the distribution � that gives the observations used 

by �. The squared error risk is a function of both � and ��, and is used to minimize the error of estimation. 
Thus, it is difficult to find the best guess which minimizes the risk function since it relies on unknown 
parameter. 
 
In the recent years, efforts have been made to find such an estimator. This includes the use of the MiniMax 

criterion to give estimators whose maximal risk is minimal among all estimators, i.e. ����∈� ����(�) −

��)�  Where �  denotes the set of all discrete distributions. See for example [2,8,9]. MiniMax estimators have 
also been utilized as a standard to measure any estimator. 
 
When the absolute value function is used to obtain an optimal estimator, it is noted that the risk function is 
non-smooth at the origin [5]. The function is smoothened at the origin using the MiniMax polynomial 
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estimation. The presence of the polynomial factor in an approximate of the density can be worse in tail areas; 
the approximate density may even be negative and cannot be integrated to 1. In this study therefore, an 
estimator that gives clear and accurate results is proposed; the saddle point approximation. The estimator 
provides accurate approximation of densities and tail probabilities even in small samples [10,11]. 
 
The rest of this paper is organized as follows. In section 2, we review the Normal means model. The Saddle 
point approximation is considered in section 3. In section 4 the estimator is developed using the Edgeworth 
expansions. The asymptotic properties of the developed estimator are discussed in section 5. In section 6 the 
empirical study is considered while section 7 considers the conclusions [12]. 
 

2 The Normal Means Model 
 
The problem of density estimation can be related to the Normal means problem since the Normal means 
problem unifies some NP problems. For instance, suppose �� = ��,… ,��where 
 

�� = ��+ ����,�= 1,… ,�,                                                                                                               (1) 
 
��,… ,�� are independent, � (0,1) random variables, and ��= ��� ∑ ���

�
���  

 
�� = (��,… ,��) ∈ ℝ � 
 

is a vector of unknown parameters and �� is assumed known. The model appears to be parametric but the 
number of parameters increases at the same rate as the size of the sample. The above model has all the 
complexities of a NP problem. In order to realize this, an infinite-dimensional version of equation (1) is 
considered, 
 

�� = ��+ ����,�= 1,2,…                                                                                                                  (2) 
 

Where now the unknown parameter is � = ��,��,…  
 

Table 1. The normal means ���= ��+ � (�,��) and ��= ��� ∑ ���= ��+ ����
�
���  

Where �� =
�

√�
 Estimating the parameters ��,… ,�� from the � column means ��,… ,��lead to the 

model ��= ��+ ���� with �� =
�

√�
 

 

�� �� … �� … �� 
��� 
⋮ 
��� 

⋮ 
��� 

��� 
⋮ 
��� 

⋮ 
��� 

… 
 
… 
 
… 

��� 
⋮ 
��� 

⋮ 
��� 

… 
 
… 
 
… 

��� 
⋮ 
��� 

⋮ 
��� 

�� ��  ��  �� 
 

Given an estimator   ��� = ���,… ,���, the squared error loss 
 

�����,���= ∑ ����− ���= (||��� − ��||)��
���                                                                                   (3) 

 
is used with risk function; 
 

�����,���= ��(����
�,���= ∑ �����

� − ���
��

���                                                                           (4) 
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One of the choices for an estimator of ��  is ��� = �� . This estimator is the MLE, minimum variance 

unbiased estimator and the Bayes estimator under a uniform prior. However, ��� = �� is a poor estimator as 
its risk is 
 

�����,���= ∑ ��(��− ��)
� = ∑ ��

� = ���
��

���
�
���                                                                           (5) 

 
Estimators with significantly small risks than �(��,��) can be obtained. The Normal means problem in 
relation to NP regression and density estimation is important to improve this estimator. In order to obtain 
such an estimator, a review on the Hilbert function space is required [13,14]. 
 

2.1 Hilbert sample space 
 
The Hilbert sample space is the closest analogy to the Euclidean space in infinite dimension. 
 
The Hilbert space is a complete inner product space denoted by �(〈.,.〉) and abbreviated by ��  [4]. The 
square integrable functions form a complete metric space under the metric induced by the inner product. The 
importance of forming a complete metric space is to allow the sequences converge, and find a point to which 
they converge within space. 
 
An inner product always generates a norm. And where there is a norm, there is a metric. A norm defined by 
the inner product 〈.,.〉 will define the following metric; 
 

�(�,�)=∥� − � ∥= �〈� − �,� − �〉 ∀�,� ∈ �                                                                                (6) 
 
Inner product norms satisfy a number of properties that are not satisfied by all norms. 
 
The coordinates of an element of the Hilbert space can be specified uniquely with respect to a set of 
coordinate axes, which is in analogy with the Cartesian coordinates in the plane. A sequence of functions 

��,��,…  is called orthonormal if ∥�� ∥=1 for all � and ∫ ��(�)��(�)
�

�
�� = 0 for �≠ �. This sequence is 

complete if the only function that is orthogonal to each �� is the zero function. A complete, orthogonal set of 

functions forms a basis, meaning that if � ∈ ��(�,�) then � can be expanded in the basis. An example of an 
orthonormal basis is the Chebyshev and Hermite polynomials defined on (− 1,1) [15]. 
 
However, indicated that there is a limitation for the use of Hilbert space on the real line [3]. First, the 
standard Hilbert space requires that the unknown function approaches zero at infinity. This makes it 
unreasonable to be used on some models like the economic model. To overcome this, weighted Hilbert 
spaces are used, since they enforce weaker limiting requirements at infinity. Second, the Hilbert space is 
restricted to bounded sample spaces in nonparametric estimation [15]. 
 

3 The Saddle Point Approximation 
 
The saddle point estimate can be gotten from any statistic that concedes a cumulant generating function. The 
estimate gives a relative error which gets small with the density in the tails of the distribution. In saddle 

point estimation, the empirical distribution is used to give a relative error of order ��
�
�. This results in an 

improvement over the absolute error in the tails of the distribution. 
 
Suppose �(�) denotes the density being approximated, the asymptotic approximation can be written 
 

�����(�) = �(�) + �(��
�
�)                                                                                                                 (7) 
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This means �����(�) − �(�)/(��
�
�) is bounded as � approaches some constant. The empirical saddle point 

approximation can be written 
 

�����(�) = �(�)�1 + �(��
�
�)�                                                                                                          (8) 

 
Also, the saddle point density replaces the Central Limit Theorem (CLT) in the conventional general 
strategy for moment’s distribution theory [16]. While the CLT uses data about the location and convexity of 
the general method of moment’s objective function at the global minimum, the saddle point approximation 
uses data about the shape of the objective function at each point in the parameter space. 
 
The CLT is typically displayed as far as assessing the mean of a distribution. It demonstrates that the sample 

mean,  �� =
�

�
∑ ��~(�,

��

�
)�

��� . So as to demonstrate how quick the distribution converges to normality, the 

moment generating function of �,� �(�) = ���  is used. The MGF remarkably recognize a specific 
distribution. It is likewise possible to make adjustments to this function to build the accuracy of the 
approximations. The Edgeworth expansions technique utilizes information about higher order moments to 
build accuracy of the approximations [16]. 
 
One issue with the MGFs is that they don’t always exist. This is understood through the characteristic 
function which is the complex extension of the MGF and defined as ��(�) = �(����), where �� = −1. The 
characteristic function just like the MGF uniquely identify distributions and can be used to show limiting 
results. 
 

3.1 The characteristic function 
 
The characteristic function of a probability measure � on the line is defined for real � by 
 

�(�) = � �����(��)
∞

�∞

 

 

= ∫ ������(��) + �
∞

�∞
∫ ������(��)

∞

�∞
                                                                                            (9) 

 
A random variable � with the distribution � has the characteristic function 
 

�(�) = �[����]= ∫ �����(��)
∞

�∞
                                                                                                    (10) 

 
The characteristic function in non probabilistic settings is the Fourier transform. The Fourier transform is 
used in the Central Limit Theorem to send smooth functions to bounded functions and bounded functions to 
smooth functions. 
 
For instance, if �:ℝ → ℝ , the Fourier transform of � is defined by 
 

��(�) = ∫ ������(�)(��)
∞

�∞
                                                                                                            (11) 

 

Where g is a Schwartz function, it is �∞ and all of its derivatives decay at ±∞ faster than every polynomial 
[17]. In the event that g is Schwartz, then �� is Schwartz. This gives the inversion formula 

 

��(�) =
�

��
∫ ������(�)(��)

∞

�∞
                                                                                                          (12) 

 

holds for Schwartz functions. A straightforward computation shows that 
 

  ���
� �⁄ = √2� � ���

� �⁄  
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Suppose �~�(�) and ��(�) denotes the characteristic function of �. If ∫ |��(�)|< ∞
∞

�∞
, then �(�) = ��(�) 

exists and 
 

�(�) =
�

��
∫ ������(�)(��)

∞

�∞
                                                                                                          (13) 

 
This gives the inversion formula for characteristic functions. Also 

 

� �(�)��(�)��
∞

�∞

= � �(�)�� ��(�)
∞

�∞

�������
∞

�∞

 

                               = � �(�)��(�)���������
∞

�∞

 

                           =∫ ��(�)�(�)��
∞

�∞
                                                                                                (14) 

 
This is valid given that the interchange of integrals can be justified; specifically, it holds for Schwartz �,�. 
 
If �~� (0,1), then by completing the square in the exponential, the characteristic function for a standard 
normal distribution can be obtained; 
 

�(�) = ����
1

√2�
���

� �⁄ �� = ���
� �⁄  

 
Then for any � > 0, 
 

1

2�
� ��������

� �⁄ (��)���)
∞

�∞

=
(− 1)�

2�

��

���
� ��������

� �⁄ ��
∞

�∞

 

                                                            = (− 1)�
��

�� �
�(�) 

                                                           = ��(�)�(�)                                                                                     (15) 
 

Where (3.1.7) pursues from (3.1.5) since ���
� �⁄  is the characteristic function for a standard Normal 

distribution [17]. 
 

As seen earlier, the CLT is based on a two-term Taylor series expansion of a higher degree expansion to get 
extra precision. This results in Edgeworth expansion technique that gives significantly better estimates at the 
mean of a distribution. However, the quality of the estimate can weaken especially for the values away from 
the mean. 
 

So as to get an improved estimate at an arbitrary value in the parameter space, the original distribution is 
changed to a conjugate distribution. A specific conjugate distribution is selected so that its mean is changed 
back to the original distribution at the value of interest. 
 

4 The Developed Estimator 
 
Suppose F is a function to estimate �(�) = ∑ |��|

�
��� to such an extent that �[�,�]→ ℝ : and g(x) is a 

polynomial approximation of F as for the weight function � (�). Let ��,��,… ,��  be independent Normal 
random variables where ��~� (0,1) from F(x). Assume �(��) = 0 and ���(��) = 1; for otherwise, each �� 

is replaced by (�� − �(��) ����(��)⁄ ). Let likewise � = �(��
�) and �= �(��

�) and assume �< ∞. In this 

paper, the estimate of the distribution of the standardized sum, 
 

�� =
1

√�
� ��

�

���
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is developed. By the CLT, ��~� (0,1) [11]. Also for each �, �(�� ≤ �) → Φ(�) where Φ(�) shows the 
standard Normal distribution function. In this work, a better estimation to �(�� ≤ �)  than Φ(�)   is 
developed by the characteristic function of ��. 
 

���(�) = ��������√� ∑ ���⁄ ��= ���(� √�⁄ �
�

                                                                             (16) 

 

At this point the Taylor's expansion of �������/√�� is used: As � → ∞, 
 

���
�

√�
�= � �1 +

���

√�
+
(��)���

2�
+
(��)���

6�√�
+
(��)���

24��
�+ ℴ �

1

��
� 

 

= �1 −
��

��
�+

(��)��

��√�
+

(��)��

���� + ℴ �
�

��
�                                                                                                 (17) 

 

where ℴ �
�

��
� is the error in the Taylor's expansion and �= −1. Raising this tetra nominal to the nth power 

most terms are ℴ �
�

�
�: 

 

  ��� �
�

√�
��

�

= �1 −
��

2�
�

�

+ �1 −
��

2�
�

���

+ �
(��)��

6√�
+
(��)��

24�
� 

 

+ �1 −
��

��
�
��� (���)(��)���

����
+ ℴ �

�

�
�                                                                                                  (18) 

 
Using (17) and the binomial theorem equation for a fixed nonnegative integer �: 
 

�1 +
�

�
�
���

= �� �1 −
�(���)

��
�+ ℴ �

�

�
� as � → ∞ 

 

���
(�) = ��

��

� �1 −
��

8�
+
(��)��

6√�
+
(��)��

24�
+
(��)��

72�
�+ ℴ �

1

�
� 

 

= ��
��

� �1 +
(��)��

�√�
+

(��)�(���)

���
+

(��)���

���
�+ ℴ �

�

�
�                                                                             (19) 

 
Combining equation (19) with (15) the density function below is obtained as an approximation to the 
distribution of ��: 
 

�(�) =
�

��
�∫ ������

���

� +
�

�√�
∫ ������

���

� (��)���+
���

���

∞

�∞
∫ ������

���

� (��)���    +
��

���
∫ ������

���

� (��)���
∞

�∞

∞

�∞

∞

�∞
�            (20) 

 
Putting (20) with (14) gives: 
 

�(�) = �(�) �1 +
γ� �(�)

�√�
+

(���)��(�)

���
+

����(�)

���
�                                                                            (21) 

 
Using (21), the antiderivative of �(�) equals: 
 

�(�) = Φ(�) − �(�) �
γH�(x)

6√�
+
(�− 3)��(�)

24�
+
����(�)

72�
� 

 

= Φ(�) − �(�)�
γ(����)

�√�
+

(���)(�����)

���
+

��(�����������)

���
�                                                            (22) 
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The letter �  denotes the probability density function and the corresponding distribution function is denoted 
Φ. 
 

5 Asymptotic Properties of the Developed Estimator 
 
In this section, the focal point is describing properties of estimators when sample sizes are arbitrarily large. 
The properties of an estimator not withstanding when the sample size is finite are like when the sample size 
is arbitrarily large. The assumptions are made on the stochastic procedure that generates the sample. The two 
fundamental tools of asymptotic are asymptotic normality and consistency [18]. 
 

5.1 Asymptotic normality of the developed estimator 
 
Asymptotic normality shows that as more data are obtained, averages of random variables behave such as 
normally distributed random variables. The probability tools for establishing asymptotic normality are the 
Central Limit Theorems (CLTs). The CLT demonstrates that in the event that a large enough sample is 
drawn from a population, at that point the distribution of the sample mean is approximately normal, 
regardless what population the sample was drawn from. 
 
For instance, let ��,… ,�� represent sample from a Binomial distribution generated randomly with fixed �, 
as � gets larger the p.m.f. looks increasingly like a normal p.d.f. Suppose ��,…,��~�.�.�����(�) then the 
distribution of ∑ �� looks increasingly Normal as � → ∞ Also, for fixed n, the p.m.f. looks more Normal 
when  � = 0.5  than when � = 0.05. This is because convergence under the CLT is faster when the 
distribution of each �� is more symmetric. 

 

 
 

Fig. 1. The Binomial Probability mass function 
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5.2 Consistency of the developed estimator 
 
Consistency demonstrates that the more data are obtained at that point one gets closer to knowing the truth. 
The probability theory tools for creating consistency of estimators are Laws of Large Numbers (LLNs). A 
LLN is a result that expresses the conditions under which a sample mean of random variables tends to a 
population mean. It concerns conditions under which the sequence of sample mean converges either in 
probability or almost surely. The results of LLN include: Chebyshev’s LLN, Kolmongorov’s/Khinchine’s 
LLN, Markov LLN. 
 
The Chebyshev inequality is used to demonstrate that the developed estimator �(�) is a consistent estimator 
for �(�). Let �� be i.i.d normal random variables where ��~� (��,1). Let X be a random variable with mean 
� and variance �� then for any number � > 0, 
 

��{|��− �|≥ �}≤
���(��)

��
       ∀�� < ∞ 

 

For a normal distribution; ��=
∑ ��

�
,���(�) = ����

∑ �

�
�=

�

��
∑ ���(�) =

�

��
∑ �� =

��

�
 

 
By Chebyshev’s inequality, 
 

lim
�→ ∞

�{|��− �|> �}≤
���(��)

��
 

 

= lim
�→ ∞

��

���
= 0 

 
Since it gives zero, then �� is a consistent estimator for �. 
 

5.3 Performance of the developed Estimator using the MiniMax criterion 
 
The MiniMax criterion aims at finding an estimator ��(�) for the parameter � which minimizes the given risk 

function �(�,��). The risk function �� is the expectation of some loss function �(�,��) with respect to the 
conditional probability distribution �(�|�). The risk of an arbitrary estimator �� is defined as ��(�(�) −
��) � this risk cannot be minimized directly [19]. 
 
Calculating the exact MiniMax risk and MiniMax estimator for �(�) is difficult. Moreover, even if the 
MiniMax Risk is computed exactly, it will depend on a parameter which is unknown. Hence, the 
requirement is slightly relaxed and seeks to obtain MiniMax rate estimators with maximum risk equal to the 
MiniMax risk up to a multiplicative constant. The MiniMax rate-optimal estimators are closely related to the 
problem of best polynomial approximation, which is a convex optimization problem. The connection 
between the two is important in approximation theory [19]. 
 
According to [8,9], a MiniMax estimator performs best in the worst possible case allowed in the problem. 
That is 
 

���� ���,���= inf
���
sup
�∈Θ

 �(�,��)                                                                                                      (23) 

 

Where the infimum is over all estimators �. 
 

Let � be the parameter and �� its estimator defined as 
 

�� = �(�) = ∑ ∝� ���2
���

���
− 1��

���                                                                                                (24) 
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The MiniMax Risk for the developed estimator is 
 

�� ≡ ��(�) = inf
���
sup
�∈Θ

 �(�,��)                                                                                                        (25) 

 
The aim of this paper is to determine the MiniMax risk, �� and find an estimator 
 
that achieves this risk: 
 

����∈Θ ���,���= inf
���
sup
�∈Θ

 �(�,��)                                                                                                   (26) 

 
It is difficult to obtain an estimator that satisfies (26) and therefore an estimator 
 
that achieves the MiniMax rate is used. 
 

����∈Θ ���,���≍ inf
���
sup
�∈Θ

 �(�,��)   � → ∞                                                                                     (27) 

 
Where (.) ≍ (..) means that both (.)/(..) and (..)/(.) are both bounded as � → ∞. 
 
Calculating the MiniMax Risk formalizes the idea of the existence of a best rate of convergence. The rate 
refers to point wise convergence uniformly over models in small neighborhood by some particular model of 
interest. However, the MiniMax Risk converges to zero at a slow logarithmic rate [20]. 
 

6 Simulations 
 
A simulation experiment is performed in order to approximate a continuous function �(�) by Chebyshev 
polynomial approximation, ��  as well compare the error of approximation as �  increases. Let �(�) =
�����10� defined on the interval [−1,1] be approximated by ��  where � = 1,4,9,16 and �� ∈ �� . The 
following diagrams represent plots of �(�) being approximated by ��. 
 
Fig. 2 shows that the error of approximating �(�) by �� decreases as � increases. To measure how good f(x) 
is approximated by the Chebyshev polynomials �� ∈ ��, the uniform norm, ∥� − �� ∥= max������ |�(�) −
��(�)| is used. This gives the error of approximation as the greatest distance between  �(�) and  ��(�) with 
� ∈ [− 1,1] [21]. The coefficients of the function and the Chebyshev polynomials are used to calculate the 
absolute difference between �(�) and ��(�) . Table 2 show the coefficients of the function, �(�) and the 
Chebyshev polynomials, ��. 
 
The absolute difference between �(�) and ��(�) calculated from the coefficients using Matlab are shown in 
Table 3. From Table 3, the absolute difference between �(�) and ��(�)  decreases as n increases. Also, the 
error of approximation between �(�) and ��(�)  is larger than the error measure between �(�) and ���(�). 
Thus, the Chebyshev polynomial T16(x) gives the smallest error to the function �(�) and ��(�). 
 

6.1 Real Data 
 
Table 4 shows the masses of fifteen 100 gram tinned blue band weighed by an electric weighing machine. 
The table consists of repeated measurements of tinned blue band. 
 
From Table 4 one notes that the masses of tinned blue band vary. This indicates that randomness is involved. 
The mean and variance of the observed data is 110:1 and 3:61667 respectively. However, these summary 
statistics do not give all the information in the observed masses. When the masses are put in an array, the 
elements lie between 106:8 and 112:5. The middle element (8th) is 110:5 which is closer to the maximum 
value 112:5 than the minimum value 106:8. 



 
 
 

Kololi et al.; AJPAS, 5(1): 1-15, 2019; Article no.AJPAS.50976 
 
 
 

11 
 
 

  

  
 

Fig. 2. Plots of �(�) and its Chebyshev polynomial approximation ��; n=1,4,9,16 
 

Table 2. Coefficients of �(�), ��, � = �,�,�,�� 
 

f(x) P1 P4 P9 P16 
0.0000 0.0000 O.3750 0.0000 0.1964 
0.0360 1.0000 0.0000 0.4922 0.0000 
0.0000 - 0.5000 0.0000 0.3491 
-0.1537 - 0.0000 0.3281 0.0000 
0.0000 - 0.1250 0.0000 0.2444 
-0.3716 - - 0.1406 0.0000 
0.0000 - - 0.0000 0.1333 
-0.1878 - - 0.0352 0.0000 
0.0000 - - 0.0000 0.0555 
0.1219 - - 0.0390 0.0000 
0.0000 - - - 0.0171 
0.0373 - - - 0.0000 
- - - - 0.0037 
- - - - 0.0000 
- - - - 0.0005 
- - - - 0.0000 
- - - - 0.0000 

 

Table 3. Absolute difference between f(x) and P_n (x) 
 

� � � � �� 
|�(�) − ��(�)| 0.8301 0.5301 0.4301 0.3889 
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Table 4. Masses of 15 tinned Blue band in Grams 
 

� � � � � � � � 8 
Mass 112.5 108.5 111.6 110.4 110.8 110.6 111.7 112.1 
� 9 10 11 12 13 14 15  
Mass 106.8 110.5 107.9 108.1 112.5 108.6 107.9  

 
Also, the observed data are univariate and consist of one particular quantity. Such data can be represented 
graphically by kernel density estimates and the empirical distribution function to give a visual impression of 
the main features of a dataset [22]. 
 
Fig. 3(a) is a histogram of the masses of 100 gram tinned blue band. From this figure one gets the impression 
that there are two major varieties of 100 gram tinned blue band, one with about 108 grams and the other with 
about 110 grams. Fig. 3(a), (b), (c) reveals the asymmetry of the observed data and the fact that elements 
accumulate somewhere near 108 and 110. From the shape of the histograms it seems reasonable to assume 
that the data are not normally distributed. 
 

 
 

Fig. 3. (a), (b), (c): histograms of 100g tinned Blue band; (d),(e),(f): density estimates of 100g tinned 
Blue band 

 
Fig. 3(b) is another histogram of the same data but with different bandwidth, h = 1:5. It gives an impression 
that the mass is evenly distributed with a small number of lower mass. Fig. 3(c) gives a similar impression as 
4.2(b). These histograms therefore illustrate that one’s impression can be influenced by both bandwidth and 
cut-off points. Fig. 3(d), (e) and (f) show density estimates for different bandwidths. Plot 4.2(d) was 

produced by the R-software default bandwidth; plots (e) and (f) were produced with 1 4�  and 1 2�  of the 

default bandwidth respectively. It is clear that larger bandwidth makes a smoother estimate of �; smaller 
bandwidth makes it rougher. 
 
More observations can be made using Fig. 3(d), (e) and (f). First, for a given bandwidth, the number of 
observed modes determines the number of individual structures in the density estimate. Secondly, the mode 
density is an indication of the compactness of the related structure. Thirdly, the difference between the mode 
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density and the saddle point density indicates separation of the observed structure. Lastly, when the mode 
density is equal to the saddle point density, the observed structures are merged into a new one. 
 
Clustering using the NP estimation of the data density is attained by recognizing local maxima and their 
basins of attractions in the multivariate surface of the data density function [14]. All the data found in the 
basin of attraction of a mode will form a separated cluster. Contour plots are used to view the surface of 
data. They show lines of constant surface values similar to topographical maps. Using MATLAB a surface 
with peaks and depressions that can be used to illustrate contour plots for the Blue band data is shown 
below. 
 

 
 

Fig. 4. Contour plot of the peaks function. The peaks make it easier to understand the hills and valleys 
in the surface 

 

 
 

Fig. 5. Filled contour plot of the peaks surface. It is created using the contourf function 
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Fig. 6. Contour plots for the blue band data 
 

7 Conclusions 
 
Estimation of the density function in the NP set-up involves highly structured problems and also faced with 
the curse of dimensionality. The squared error risk, ��  of an estimator is used to minimize the error of 
estimation. The ��  is a function of both �  and ��  hence, it is difficult to find the best estimate which 
minimizes the risk function since it relies on an unknown parameter. Effort has been made to use MiniMax 
estimators but again calculating the exact MiniMax estimator for �(�) is difficult. Thus, the requirement is 
slightly relaxed to obtain MiniMax rate estimators. The MiniMax polynomial is therefore used to smooth the 
risk function at the origin. The presence of the polynomial factor in the approximate can be worse in the tail 
areas. The Edgeworth expansion technique is used to give clear and almost accurate results. 
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