• Login
    View Item 
    •   Repository Home
    • Staff Publications
    • School of Pure and Applied Sciences
    • View Item
    •   Repository Home
    • Staff Publications
    • School of Pure and Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Classification of Stateless People through a Robust Nonparametric Kernel Discriminant Function

    Thumbnail
    View/Open
    Main Article (525.7Kb)
    Date
    2022-10-11
    Author
    Obudho, Macdonald G.
    Orwa, George O.
    Otieno, Romanus O.
    Were, Festus A.
    Metadata
    Show full item record
    Abstract
    Statelessness is the absence of any Nationality. These include the Pemba, Shona, Galjeel, people of Burundi and Rwanda descent, and children born in Kenya to British Overseas Citizens after 1983. Frequently, they are not only undocumented but also often overlooked and not included in National Administrative Registers. Accordingly, find it hard to participate in Social and Economic Affairs. There has been a major push by UNHCR and international partners to “map” the size of stateless populations and their demographic profile, as well as causes, potential solutions and human rights situation. One of the requirements by the UNHCR in their push is for countries to find a potential solution to statelessness which starts with classifying/associating a person from these communities to a particular local community that is recognized in Kenya. This paper addresses this problem by adopting a Robust Nonparametric Kernel Discriminant function to correctly classify the stateless communities in Kenya and compare the performance of this method with the existing techniques through their classification rates. This is because Nonparametric functions have proven to be more robust and useful especially when there exists auxiliary information which can be used to increase precision. The findings from this paper indicate that Nonparametric discriminant classifiers provide a good classification method for classifying the stateless communities in Kenya. This is because they exhibit lower classification rates compared to the parametric methods such as Linear and Quadratic discriminant functions. In addition, the finding shows that based on certain similarities in characteristics that exist in these communities that surround the Pemba Community, the Pemba community can be classified as Giriama or Rabai in which they seem to have a strong link. In this regard, the study recommends the use of the Kernel discriminant classifiers in classifying the stateless persons and that the Government of Kenya consider integrating/recognizing the Pemba community into Giriama or Rabai so that they can be issued with the National Identification Cards and be recognized as Kenyans.
    URI
    https://doi.org/10.4236/ojs.2022.125034
    http://repository.must.ac.ke/handle/123456789/789
    Collections
    • School of Pure and Applied Sciences [160]

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository
     

     

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository