• Login
    View Item 
    •   Repository Home
    • Staff Publications
    • School of Engineering & Architecture
    • View Item
    •   Repository Home
    • Staff Publications
    • School of Engineering & Architecture
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Build-Up and Impact of Volatile Fatty Acids on E. Coli and A. Lumbricoides During Co-Digestion of Urine Diverting Dehydrating toilet (UDDT-F) Faeces

    Thumbnail
    View/Open
    Abstract (5.237Kb)
    Date
    2018
    Author
    Riungu, Joy
    Ronteltap, Mariska
    Lier, Jules B van
    Metadata
    Show full item record
    Abstract
    This study examined the potential of Escherichia coli (E. coli) and Ascaris lumbricoides (A. lumbricoides) eggs inactivation in faecal matter coming from urine diverting dehydrating toilets (UDDT-F) by applying high concentrations of volatile fatty acids (VFAs) during anaerobic stabilization. The impact of individual VFAs on E. coli and A. lumbricoides eggs inactivation in UDDT-F was assessed by applying various concentrations of store-bought acetate, propionate and butyrate. High VFA concentrations were also obtained by performing co-digestion of UDDT-F with organic market waste (OMW) using various mixing ratios. All experiments were performed under anaerobic conditions in laboratory scale batch assays at 35±1 °C. A correlation was observed between E. coli log inactivation and VFA concentration. Store bought VFA spiked UDDT-F substrates achieved E. coli inactivation up to 4.7 log units/day compared to UDDT-F control sample that achieved 0.6 log units/day. In co-digesting UDDT-F and organic market waste (OMW), a ND-VFA concentration of 4800-6000 mg/L was needed to achieve E. coli log inactivation to below detectable levels and complete A. lumbricoides egg inactivation in less than four days. E. coli and A. lumbricoides egg inactivation was found to be related to the concentration of non-dissociated VFA (ND-VFA), increasing with an increase in the OMW fraction in the feed substrate. Highest ND-VFA concentration of 6500 mg/L was obtained at a UDDT-F:OMW ratio 1:1, below which there was a decline, attributed to product inhibition of acidogenic bacteria. Results of our present research showed the potential for E. coli and A. lumbricoides inactivation from UDDT-F up to WHO standards by allowing VFA build-up during anaerobic stabilization of faecal matter.
    URI
    https://doi.org/10.1016/j.jenvman.2018.02.076
    http://repository.must.ac.ke/handle/123456789/220
    Collections
    • School of Engineering & Architecture [34]

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository
     

     

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository