• Login
    View Item 
    •   Repository Home
    • Staff Publications
    • School of Pure and Applied Sciences
    • View Item
    •   Repository Home
    • Staff Publications
    • School of Pure and Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Glutathionylation and Reduction of Methacrolein in Tomato Plants Account for Its Absorption from the Vapor Phase

    Thumbnail
    View/Open
    Article (608.5Kb)
    Date
    2015
    Author
    Muramoto, Shoko
    Matsubara, Yayoi
    Mwenda, Cynthia Mugo
    Koeduka, Takao
    Sakami, Takuya
    Tani, Akira
    Matsui, Kenji
    Metadata
    Show full item record
    Abstract
    A large portion of the volatile organic compounds emitted by plants are oxygenated to yield reactive carbonyl species, which have a big impact on atmospheric chemistry. Deposition to vegetation driven by the absorption of reactive carbonyl species into plants plays a major role in cleansing the atmosphere, but the mechanisms supporting this absorption have been little examined. Here, we performed model experiments using methacrolein (MACR), one of the major reactive carbonyl species formed from isoprene, and tomato (Solanum lycopersicum) plants. Tomato shoots enclosed in a jar with MACR vapor efficiently absorbed MACR. The absorption efficiency was much higher than expected from the gas/liquid partition coefficient of MACR, indicating that MACR was likely metabolized in leaf tissues. Isobutyraldehyde, isobutyl alcohol, and methallyl alcohol (MAA) were detected in the headspace and inside tomato tissues treated with MACR vapor, suggesting that MACR was enzymatically reduced. Glutathione (GSH) conjugates of MACR (MACR-GSH) and MAA (MAA-GSH) were also detected. MACR-GSH was essentially formed through spontaneous conjugation between endogenous GSH and exogenous MACR, and reduction of MACR-GSH to MAA-GSH was likely catalyzed by an NADPH-dependent enzyme in tomato leaves. Glutathionylation was the metabolic pathway most responsible for the absorption of MACR, but when the amount of MACR exceeded the available GSH, MACR that accumulated reduced photosynthetic capacity. In an experiment simulating the natural environment using gas flow, MACR-GSH and MAA-GSH accumulation accounted for 30% to 40% of the MACR supplied. These results suggest that MACR metabolism, especially spontaneous glutathionylation, is an essential factor supporting MACR absorption from the atmosphere by tomato plants.
    URI
    http://repository.must.ac.ke/handle/123456789/412
    Collections
    • School of Pure and Applied Sciences [170]

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository
     

     

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository