• Login
    View Item 
    •   Repository Home
    • Staff Publications
    • School of Pure and Applied Sciences
    • View Item
    •   Repository Home
    • Staff Publications
    • School of Pure and Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bias Correction Technique for Estimating Quantiles of Finite Populations under Simple Random Sampling without Replacement

    Thumbnail
    View/Open
    Main Article (3.649Mb)
    Date
    2021-10
    Author
    Makumi, Nicholas
    Otieno, Romanus Odhiambo
    Orwa, George O.
    Were, Festus
    Alexis, Habineza
    Metadata
    Show full item record
    Abstract
    In this paper, the problem of nonparametric estimation of finite population quantile function using multiplicative bias correction technique is considered. A robust estimator of the finite population quantile function based on multiplicative bias correction is derived with the aid of a super population model. Most studies have concentrated on kernel smoothers in the estimation of regression functions. This technique has also been applied to various methods of non-parametric estimation of the finite population quantile already under review. A major problem with the use of nonparametric kernel-based regression over a finite interval, such as the estimation of finite population quantities, is bias at boundary points. By correcting the boundary problems associated with previous model-based estimators, the multiplicative bias-corrected estimator produced better results in estimating the finite population quantile function. Furthermore, the asymptotic behavior of the proposed estimators is presented. It is observed that the estimator is asymptotically unbiased and statistically consistent when certain conditions are satisfied. The simulation results show that the suggested estimator is quite well in terms of relative bias, mean squared error, and relative root mean error. As a result, the multiplicative bias-corrected estimator is strongly suggested for survey sampling estimation of the finite population quantile function.
    URI
    http://repository.must.ac.ke/handle/123456789/615
    Collections
    • School of Pure and Applied Sciences [170]

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository
     

     

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository