Show simple item record

dc.contributor.authorMakumi, Nicholas
dc.contributor.authorOtieno, Romanus Odhiambo
dc.contributor.authorOrwa, George Otieno
dc.contributor.authorHabineza, Alexis
dc.date.accessioned2022-07-05T18:19:30Z
dc.date.available2022-07-05T18:19:30Z
dc.date.issued2022
dc.identifier.citationMakumi, N., Otieno, R. O., Orwa, G. O., & Habineza, A. (2022). On Quantiles Estimation Based on Stratified Sampling Using Multiplicative Bias Correction Approach. Journal of Mathematics, 2022.en_US
dc.identifier.urihttps://doi.org/10.1155/2022/4530489
dc.identifier.urihttp://repository.must.ac.ke/handle/123456789/679
dc.description.abstractIn the context of stratified sampling, we develop a nonparametric regression technique to estimating finite population quantiles in model-based frameworks using a multiplicative bias correction strategy. Furthermore, the proposed estimator’s asymptotic behavior is presented, and when certain conditions are met, the estimator is observed to be asymptotically unbiased and asymptotically consistent. Simulation studies were conducted to determine the proposed estimator’s performance for the three quartiles of two fictitious populations under varied distributional assumptions. Based on relative biases, mean-squared errors, and relative root-mean-squared errors, the proposed estimator can be extremely satisfactory, according to these findings.en_US
dc.language.isoenen_US
dc.publisherJournal of Mathematicsen_US
dc.subjectQuantile Estimatoren_US
dc.titleOn quantiles estimation based on stratified sampling using multiplicative bias correction approach.en_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record