• Login
    View Item 
    •   Repository Home
    • Staff Publications
    • School of Computing & Informatics
    • View Item
    •   Repository Home
    • Staff Publications
    • School of Computing & Informatics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A review of techniques for morphological analysis in natural language processing

    Thumbnail
    View/Open
    Abstract (3.789Kb)
    Date
    2022-06
    Author
    Mutwiri, George
    Mutua, Makau
    Omamo, Amos
    Metadata
    Show full item record
    Abstract
    Natural language is a crucial tool to facilitate communication in our day-to-day activities. This can be achieved either in text or speech forms. Natural language processing (NLP) involves making computers understand and process natural language. NLP has enhanced the way humans interact with computers, from having computers use speech to talk to humans as well as having computers translate human speech. Apart from speech, computers also create and understand sentences in natural language in a process called morphological analysis. Morphological analysis is an important part in natural language processing, being applied as a preprocessing step in most NLP tasks. Morphological analysis consists of four subtasks, that is, lemmatization, part-of-speech (POS) tagging, word segmentation and stemming. In this paper, we explore in detail each of these tasks of morphological analysis. We then evaluate the techniques used in this NLP field. Finally, we give a summary of the results of each of these techniques.
    URI
    http://repository.must.ac.ke/handle/123456789/764
    Collections
    • School of Computing & Informatics [66]

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository
     

     

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository