• Login
    View Item 
    •   Repository Home
    • Staff Publications
    • School of Pure and Applied Sciences
    • View Item
    •   Repository Home
    • Staff Publications
    • School of Pure and Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Preparation and Chemical/Microstructural Characterization of Azacrown Ether-Crosslinked Chitosan Films

    Thumbnail
    View/Open
    Preparation_and_ChemicalMicrostructural_Characteri.pdf (5.548Mb)
    Date
    2017
    Author
    Toeri, Julius
    Osorio-Madrazo, Anayancy
    Laborie, Marie-Pierre
    Metadata
    Show full item record
    Abstract
    Chemically stable porous azacrown ether-crosslinked chitosan films were prepared by reacting varying molar amounts of N,N-diallyl-7,16-diaza-1,4,10,13-tetraoxa-dibenzo-18-crown-6 (molar equivalents ranging from 0, 0.125, 0.167, 0.25 and 0.5) with chitosan. Their chemical and structural properties were characterized by solid state-nuclear magnetic resonance (NMR), elemental, Fourier transform infrared (FTIR), microscopy, and X-ray analyses, as well as gel content. NMR and FTIR analyses of the reaction products suggested that new –CH2– crosslink bridges were produced between the amine groups of chitosan (Ch) and the allyl groups of the azacrown (DAC). The crosslinking chemistry between allyl and amine groups of the reactants was further evidenced with solution NMR studies on model compound of glucosamine with the azacrown. X-ray diffraction analysis of the Ch/azacrown films using wide angle X-ray scattering (WAXS),including synchrotron-WAXS, revealed that the crystalline arrangement of chitosan (Ch) was partially destroyed with increasing grafting of azacrown ether proportion on the Ch polymer chain. Solubility and gel content determination confirmed network formation with a gel content as high as 84–95 wt %. Microstructural analysis revealed microporous morphology with high surface area. The morphology and structure of the azacrown ether-crosslinked chitosan films could be tailored by stoichiometry of the reacting species.
    URI
    http://repository.must.ac.ke/handle/123456789/902
    Collections
    • School of Pure and Applied Sciences [170]

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository
     

     

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository