Show simple item record

dc.contributor.authorOnsongo, Winnie Mokeira
dc.contributor.authorOtieno, Romanus Odhiambo
dc.contributor.authorOrwa, George Otieno
dc.date.accessioned2018-11-20T10:38:11Z
dc.date.accessioned2020-02-06T13:03:41Z
dc.date.available2018-11-20T10:38:11Z
dc.date.available2020-02-06T13:03:41Z
dc.date.issued2018
dc.identifier.citationOnsongo, Winnie Mokeira , Otieno, Romanus Odhiambo, Orwa, George Otieno (2018). International Journal of Probability and Statistics 2018, 7(5): 125-129 DOI: 10.5923/j.ijps.20180705.01.en_US
dc.identifier.otherDOI: 10.5923/j.ijps.20180705.01
dc.identifier.urihttp://repository.must.ac.ke/handle/123456789/915
dc.description.abstractNonparametric estimation of population parameters for finite populations has been used with great success for data that fit the independent and identically distributed framework. However, most of these approaches do not extend to data from multistage samples. In this work, we present a method for developing a nonparametric distribution function for a finite population that has been stratified. Proportional allocation of sampling weights has been utilized alongside kernel weights. Asymptotic properties of the estimator are derived and are compared with those of existing model based estimators using the simulated sets of data. The results show that applying the bias reduction technique to a stratified population greatly improves precision of the estimatoren_US
dc.language.isoenen_US
dc.publisherInternational Journal of Probability and Statisticsen_US
dc.subjectStratified Samplingen_US
dc.subjectProportional Allocationen_US
dc.subjectMultiplicative Bias Correctionen_US
dc.subject, 𝛼�-Quantileen_US
dc.titleNonparametric estimation of distribution function for stratified populationsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record