• Login
    View Item 
    •   Repository Home
    • Staff Publications
    • School of Pure and Applied Sciences
    • View Item
    •   Repository Home
    • Staff Publications
    • School of Pure and Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CLASSIFICATION RATES: NON-PARAMETRIC VERSES PARAMETRIC MODELS USING BINARY DATA

    Thumbnail
    View/Open
    1117-3874-1-PB_2.pdf (231.0Kb)
    Date
    2014
    Author
    Adem, AO
    Gichuhi, AW
    Otieno, Romanus Odhiambo
    Metadata
    Show full item record
    Abstract
    Estimations of the conditional mean and the marginal effects for particular small changes in the covariates have been of interest in financial, economics and even educational sectors. The standard approach has been to specify a parametric model such as probit or logit and then estimating the coefficients by maximum likelihood method. This is only applicable when the distribution form from which the data has been drawn is known. Non parametric methods have been proposed when the functional form assumptions cannot be ascertained. This research sought to establish if non parametric modeling achieves a higher correct classification ratio than a parametric model. The local likelihood technique was used to model fit the data sets. The same sets of data were modeled using parametric logit and the abilities of the two models to correctly predict the binary outcome compared. The results obtained showed that non-parametric estimation gives a better prediction rate (classification ratio) for a binary data than parametric estimation. This was achieved both empirically and through simulation. For empirical results two different data sets were used. The first set consisted of loan applications of customers and the second set consisted of approved loans. In both data sets the classification ratio for non-parametric method was found to be 1 while that for parametric was found to be 0.87 (only 87 out of the 100 observations were correctly classified) and 0.83 respectively. Simulation was done based on sample sizes of 25, 50, 75, 100,150,200,250,300 and 500. The simulated results further showed that the accuracy of both models decrease as sample size increases.
    URI
    http://repository.must.ac.ke/handle/123456789/955
    Collections
    • School of Pure and Applied Sciences [170]

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository
     

     

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository