• Login
    View Item 
    •   Repository Home
    • Staff Publications
    • School of Pure and Applied Sciences
    • View Item
    •   Repository Home
    • Staff Publications
    • School of Pure and Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Robust Estimation of Finite Population Totals Using a Model Based Approach in the Presence of Two Auxiliary Variables

    Thumbnail
    View/Open
    10.11648.j.ijdsa.20180404.12.pdf (493.5Kb)
    Date
    2018
    Author
    Mulwa, Damaris Felistus
    Orwa, George Otieno
    Otieno, Romanus Odhiambo
    Metadata
    Show full item record
    Abstract
    The utilization of auxiliary information during surveys increases the accuracy of estimators, thereby giving more reliable estimates of the population parameters of interest. It has been established that the presence of more than one auxiliary variables, some more robust estimators can be formed by combining different estimators like product, ratio or even regression estimators and in each case the individual estimators uses its own random variable. One of the most commonly used methods is the ratio method of estimating finite totals which is the foundation of all the other methods that use auxiliary information. In this paper, an estimator of the ratio-exponential class that uses two auxiliary variables has been proposed and its variance derived. After deriving the proposed estimator the coverage probabilities were estimated. Results showed that the interval length of the proposed estimator was narrower and tighter than that of the known Horwitz-Thompson’s estimator. Two datasets from the agricultural and environmental sectors were used in order to investigate the properties of the estimator and they gave satisfactory results. Mean squared error criteria was used to investigate the performance of the proposed estimator and in both cases it had the minimum squared error values. The analysis in these paper is of very great importance in understanding environmental and agricultural data.
    URI
    http://repository.must.ac.ke/handle/123456789/974
    Collections
    • School of Pure and Applied Sciences [170]

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository
     

     

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository