Show simple item record

dc.contributor.authorPyeye, Sarah
dc.contributor.authorSyengo, Charles K
dc.contributor.authorOdongo, Leo
dc.contributor.authorOrwa, George O
dc.contributor.authorOtieno, Romanus Odhiambo
dc.date.accessioned2018-11-22T17:16:54Z
dc.date.accessioned2020-02-06T14:01:25Z
dc.date.available2018-11-22T17:16:54Z
dc.date.available2020-02-06T14:01:25Z
dc.date.issued2016
dc.identifier.citationPyeye, S., Syengo, C. K., Odongo, L., Orwa, G. O., & Odhiambo, R. O. (2016). Longitudinal Survey, Nonmonotone, Nonresponse, Imputation, Nonparametric Regression. Open Journal of Statistics, 6(06), 1138.en_US
dc.identifier.urihttp://repository.must.ac.ke/handle/123456789/980
dc.description.abstractThe study focuses on the imputation for the longitudinal survey data which often has nonignorable nonrespondents. Local linear regression is used to impute the missing values and then the estimation of the time-dependent finite populations means. The asymptotic properties (unbiasedness and consistency) of the proposed estimator are investigated. Comparisons between different parametric and nonparametric estimators are performed based on the bootstrap standard deviation, mean square error and percentage relative bias. A simulation study is carried out to determine the best performing estimator of the time-dependent finite population means. The simulation results show that local linear regression estimator yields good properties.en_US
dc.language.isoenen_US
dc.publisherScientific Research Publishingen_US
dc.subjectLongitudinal Survey, Nonmonotone, Nonresponse, Imputation, Nonparametric Regressionen_US
dc.titleLongitudinal Survey, Nonmonotone, Nonresponse, Imputation, Nonparametric Regressionen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record