• Login
    View Item 
    •   Repository Home
    • Staff Publications
    • School of Agriculture & Food Science
    • View Item
    •   Repository Home
    • Staff Publications
    • School of Agriculture & Food Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    UV-B radiation mitigates oxidative stress damage in postharvest Agaricus bisporus by modulating the antioxidant defense system

    Thumbnail
    View/Open
    Full-text pdf (6.060Mb)
    Date
    2025
    Author
    Shang, Xueli
    Bai,, Shiqi
    Wen, Liang
    Mariga, Alfred Mugambi
    Ma, Ning
    Fang, Donglu
    Yang, Wenjian
    Hu, Qiuhui
    Pei, Fei
    Metadata
    Show full item record
    Abstract
    Agaricus bisporus (A. bisporus) has fragile tissues and is highly susceptible to post-harvest decay and spoilage, which affecting the development of the industry. Ultraviolet B (UV-B) irradiation, as a typical irradiation preservation technology, is effective in inducing the production of endogenous metabolic substances in organisms and enhancing their level of resistance. The objective of this study was to investigate the mechanism of activation of the antioxidant defence system in A. bisporus by UV-B irradiation, utilising a range of UV-B irradiation doses (0, 25, 50 and 100 kJ m−2). In this study we found that 50 kJ m−2 UV-B irradiation effectively delayed the accumulation of reactive oxygen species (ROS), inhibited NADPH oxidase (NOX) activity and the expression of Rbohf, PXMP2, PXMP4, APO, and MPV17. Moreover, it could increase the accumulation of ascorbate (AsA) and glutathione (GSH), enhance the activities of ascorbate peroxidase (APX) and glutathione peroxidase (GSH-PX), and it also effectively induce catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) activities and up-regulate the expression levels of related genes. In addition, we found that UV-B irradiation upregulated the expression of UVR8 and suppressed the expression of PEX5, PEX11 and PMD1. These results suggest that 50 kJ m−2 UV-B irradiation could stimulate the UV Resistance Loucs 8 (UVR8) receptor, regulate peroxisome proliferation, and enhance the ability of A. bisporus to resist oxidative stress, thereby maintaining the cellular redox homeostasis, this provides a new strategy for the study of extended postharvest storage stability of A. bisporus.
    URI
    http://repository.must.ac.ke/handle/123456789/101
    Collections
    • School of Agriculture & Food Science [251]

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository
     

     

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository