• Login
    View Item 
    •   Repository Home
    • Staff Publications
    • School of Agriculture & Food Science
    • View Item
    •   Repository Home
    • Staff Publications
    • School of Agriculture & Food Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Invasive Plant Species and Biomass Production in Savannas

    Thumbnail
    View/Open
    Full-Text (561.9Kb)
    Date
    2011
    Author
    Mworia, John K
    Metadata
    Show full item record
    Abstract
    Savannas are the second largest biome accounting for c. 30% of terrestrial production. Tropical savannas are distributed largely in Africa, Australia and South America occurring between tropical forests and deserts. It is the coexistence of trees and grasses that make savannas unique. The structure of savannas or the ratio of trees to grasses which has important implications on ecosystem productivity is determined by resource availability (rainfall and soil nutrients) and disturbances (fire and herbivory) also referred to as ‘drivers’. Resources influence the distribution and productivity of savanna vegetation while fire can alter vegetation structure via effects on the woody layer. Herbivory influences savannas structure and composition through its effects on nutrient cycling, seed dispersal and physical defoliation effects and may lead to expansion of the shrub layer. While ecologists agree the four drivers determine tree-grass balance the exact mechanisms are still debated with one school of thought emphasizing the importance of resources as ‘primary determinants’ in what are referred to as ‘competition models’ which basically invoke the classic niche separation mechanisms in resource acquisition. The other school of thought referred to as ‘demographic bottleneck models’ emphasizes the role of disturbances as the primary determinants through their effects on life history stages of trees. It’s been shown however that at low levels of mean annual rainfall, precipitation governs the cover of trees and above a critical value disturbances prevent trees from forming a closed canopy. Invasive species are considered to be non-native species that have been introduced outside their normal range and are expanding in range causing ecological and economic harm and can drastically alter the structure and composition of savannas. Most non-native species introduced in savannas were for well intended commercial and ecological purposes such as pasture and fodder improvement or rehabilitation of degraded areas. Even though patterns of invasion can not be easily generalized, a trend is that African C4 grasses such as Melinis minutiflora and Andropogon gayanus make up the most obnoxious invaders in the South American and Australian savannas while in contrast neotropical trees and shrubs are among the most successful invaders of African and Australian savannas such as Prosopis spp and Lantana camara. Ecologists have persistently attempted to answer the question ‘what makes a community susceptible to invasion’? Plant characteristics of the invader is an important factor, plants introduced in savannas for improvement of pasture/fodder are generally selected for aggressiveness/competitiveness compared to native species. Selected shrubs for example tend to have fast growth, easy to propagate and often N fixers while grasses display aspects of higher resource use efficiency and greater tolerance to grazing. Ecological disturbances such as heavy grazing can destroy native vegetation and favor unpalatable invaders through effects on resource availability. Among other factors thought to enhance invasibility is climate change and its synergistic interactions with elevated CO2 since most invasive species have traits that allow them to respond strongly to elevated CO2. Productivity levels of savannas are on a broad scale related to the relative proportion of trees to grasses while precipitation is the most important factor with an almost linear relationship to biomass production. Gaps and inconsistencies in savanna Net Primary Productivity data collected over the years make spatial and temporal comparison difficult. This paucity arises from the ‘evolution’ of methodologies in Net Primary Productivity (NPP) determination from the earlier commonly used ‘peak biomass’ methods that grossly underestimated NPP, through improvements incorporated in International Biological Programme (IBP) studies in the 1970’s to further refinements in the United Nations Environmental Programme (UNEP) grassland studies that made corrections for a wide range of losses during the growth phase previously unaccounted for. Further gaps in data are because most savanna productivity studies have focused on single species within the community of study or lumped several species and rarely included both tree and grass components. Comparison of non-native and native species prior to introduction was often made through screening trials where the fodder trees were largely evaluated for productivity, digestibility, nutritional value and soil amelioration among others. Selected non-native woody species invariably had superior performance in growth parameters e.g Prosopis juliflora produced up to 188% more in aboveground biomass than the valuable indigenous Acacia tortilis in Senegal. Many screening trials also showed that despite slow growth native tree species in most trials had other positive attributes and not all were outperformed by non-natives and moreover only a small proportion of selected non-natives became invasive. African C4 grasses introduced in the neotropics and Australia on account of higher productivity have also altered fire regimes, hydrology and nutrient cycling for example Andropogon gaynus invasion in Australia which can lead to a biomass load of over 300% compared to native species but has resulted in fires eight times more intense on average. Invasive herbs just like grasses and trees can have negative impacts such as the bi- annual unpalatable Ipomoea hildebrandtii which depresses native grass biomass production in addition to changes in site hydrologic and nutrient dynamics patterns. Can invasive species in savannas increase carbon sequestration? Given the rapid increase in coverage of invasive species e.g Prosopis juliflora is already estimated to cover 500,000 and 700,000ha in Kenya and Ethiopia while vast areas in Columbia, Venezuela, Brazil and Australia are dominated by higher yielding African C4 invasive grasses. An assessment of several studies in forests, grasslands and wetlands showed that ecosystem productivity was higher in invaded ecosystems. In savannas above ground carbon (C) stocks increases as the proportion of trees increases relative to grasses. Soil carbon constitutes over two-thirds of the global carbon found in terrestrial ecosystems. Net soil carbon stock in savannas is regulated by inputs from primary productivity and heavy losses due to herbivory and fire. It follows alteration of the C and N cycles by invasive species can vary carbon sequestration. Alteration of the C cycle components in savannas is attributed to differences in ecophysiological traits between the invasive and indigenous species. Some invasive species traits that lead to increased sequestration include faster relative growth, deep rooting, herbivore defense traits, faster litter decomposition and N fixation. However not all invasive species have these traits some decrease sequestration by depressing N mineralization and having lower litter decomposition, more studies to enable the quantification of this process in savannas are required.
    URI
    http://repository.must.ac.ke/handle/123456789/487
    Collections
    • School of Agriculture & Food Science [251]

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository
     

     

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository